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1 Material and characterization methods

1.1 Materials

All the reagents and solvents used for the synthesis were commercially available and
used without further purification. The mesitylene (1,3,5-trimethylbenzene, >98%),
MeOH (methanol, 99%) were purchased from Sigma Aldrich Chemicals. LiTFSI
(Lithium Bis(Trifluoromethanesulfonyl)imide, Sigma Aldrich) and PEO (polyethylene
oxide, My = 1X10% or 10° Da, Sigma Aldrich), PVDF ( poly (vinylidene fluoride),
Sigma Aldrich), and the precursors such as ethyl acitimidate hydrochloride (ABCR,
99%) and terepthalaldehyde (Sigma Aldrich, 99%) were purchased and used as
received. All aqueous solutions were prepared with DI water produced from the

Millipore purification system.

1.2 Characterization methods

1.2.1 Powder X-ray diffraction (PXRD) analysis

Powder X-ray diffraction data were collected on a Bruker D8 Advance diffractometer
in reflection geometry operating with a Cu Ka anode (A = 1.54178 A) operating at 40
kV and 40 mA. Samples were ground and mounted as loose powders onto a Si sample
holder. PXRD patterns were collected from 2 to 60 20 degrees with a step size of 0.02
degrees and an exposure time of 2 seconds per step. For air-sensitive samples, the
samples were loaded on an air-tight holder in the glovebox and measured immediately

after being transferred out of the glovebox.

1.2.2 Scanning electron microscope (SEM)

The SEM analyses of COF samples were performed on an S-2700 scanning electron

microscope (Hitachi, Tokyo, Japan).



1.2.3 Transmission electron microscopy (TEM)

COF samples for TEM were sonicated in ethanol for 10 min and a 4 pL of sample
dispersion was applied to Lacey carbon-coated copper TEM grids (200 mesh, Science
Services) and subsequently dried under a fume hood. Imaging was performed on JEM-
2100 (JEOL GmbH, Eching, Germany) operated at 200 kV and equipped with a 4 k x 4

k CMOS digital camera (TVIPS TemCam-F416).

1.2.4 Fourier transform infrared spectroscopy (FTIR)

analyses

The Fourier transform infrared spectroscopy (FTIR) analyses of the samples were

carried on a Varian 640IR spectrometer equipped with an ATR cell.

1.2.5 X-ray photoelectron spectroscopy (XPS)

XPS was measured on K-Alpha™ + X-ray Photoelectron Spectrometer System
(Thermo Scientific) with Hemispheric 180° dual-focus analyzer with 128-channel
detector. X-ray monochromator is Micro focused Al-K, radiation. For the
measurement, the prepared powder samples were pressed and loaded on carbon taps,
then pasted onto the sample holder for measurement. The data was collected with an
X-ray spot size of 400 um, 20 scans for the survey, 50 scans for the specific regions,

and 100 scans for the valance band (VB) regions.

1.2.6 Solid-state NMR (ss-NMR) measurements

Li solid-state NMR magic-angle spinning (MAS) and '3C cross-polarization magic
angle spinning (CPMAS) spectra were carried out on a Bruker Avance 400 MHz
spectrometer operating at 100.6 MHz and 155,4 MHz for '3C and "Li, respectively. The

experiments were carried out at a MAS rate of 10 kHz using a 4 mm MAS HX double-
3



resonance probe with two pulse phase modulation (TPPM) proton decoupling was used
during acquisition. The 77 value of ’Li was measured using a saturation recovery pulse
sequence with 100-500 saturation pulses in the saturation pulse train and recovery times
varying from 0.05 s to 5000 s. The 7; was obtained according to the formula:

1= I(1—exp(—t/ T}))
where [ is the peak intensity at time ¢, I, is the saturation intensity and 7 is the

longitudinal relaxation constant.

1.2.7 Physisorption measurements

Nitrogen (N,) sorption analyses were conducted at 77 K using an Autosorb-iQ-MP from
Quantachrome. The pore size distributions were calculated from the adsorption
isotherms by quenched solid density functional theory (QSDFT) using the slit pore
model for carbon adsorbents. Before analysis, samples were degassed at 120 °C for 12

h. BET surface areas were determined over a 0.05-0.1 p/p, range.

1.2.8 Thermogravimetric analysis (TGA)

TGA measurements were carried out under Nitrogen enviroment on a Mettler Toledo
TGA 1 Stare thermal instrument with a heating rate of 5 K min.

1.2.9 Dynamic differential calorimetry (DSC) measurement

The phase transition behaviors of the VCOF-SPE and Ref-SPE were determined by a
differential scanning calorimeter (Netzsch 200 F3). The samples are cooled from room
temperature to -60 °C and equilibrated at -60 °C for 30 min before collecting data. The

heating scan was started from -60 °C to 200 °C with a heating rate of 10 K min-'.

1.2.10 Tensile tests



All the samples for tensile tests were cut into rectangular strips with a width of 3 mm
and lengths of 30 mm by a razor blade. Mechanical tensile tests were conducted on an
Instron 5960 universal testing machine (Instron, USA) at room temperature. Tensile
strength and failure strain were recorded when the fracture occurred. Young’s modulus

was calculated from the slope of the linear region of the stress-strain curves.

2. Materials preparation

2.1 Synthesis of VCOF-1

Vinylene-Linked Covalent Organic Frameworks!: 2,4,6 trimethyl s-triazine was
synthesized by following the reported procedures!. A Teflon-lined steel autoclave (23
mL, Parr instrument) was charged with 2,4,6 trimethyl s-triazine (TMT) (73.8 mg, 0.6
mmol), terepthalaldehyde (TA) (120.69 mg, 0.9 mmol), NaOH (105 mg), methanol
(14mL) and mesitylene (2mL). The autoclave was sealed and placed in a preheated
oven at 180 °C for 3 days. After three days, the autoclave was cooled down and the
formed precipitate was collected by filtration and thoroughly washed with water,
methanol, and acetone. VCOF-1 was obtained as a fluffy yellow powder after a further
drying step under vacuum at 100 °C. It is noted that the samples should avoid prolonged

exposure to light to prevent cycloaddition reactions'. Isolated yield: 83% (135 mg).

2.2 Preparation of VCOF-SPE and Ref-SPE

VCOF solid polymer electrolyte (VCOF-SPE): Appropriate quantities of LiTFSI
(Lithium Bis(Trifluoromethanesulfonyl)imide) and polyethylene oxide (PEO, My =
1*10%) for EO to Li* ratio 8:1 were dissolved in 5 mL acetonitrile. Then 3.85 wt% of
VCOF-1 and 9.6 wt% of poly (vinylidene fluoride) (PVDF) were added and
homogeneously stirred for 24 hours at room temperature. Afterward, the obtained slurry

was cast on a Teflon plate and dried inside the Argon glove box for 7 days. The
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thickness of the free-standing polymer electrolyte film was tuned at approximately 200
um, denoted as VCOF-SPE. PVDF was introduced as an enhancement to the
mechanical properties of the SPEs. The incorporation of PVDF aimed to address the
issue of stickiness and difficulty in peeling off SPEs prepared solely from PEO and
LiTFSI, particularly when adhered to the PTFE plate. In addition, PVDF also reduces

the crystallinity of PEO and thereby enhances the mobility of Li ions2.

3. Electrochemical Measurements

3.1 Coin-cell assembly and test parameters

Cells were facially assembled by 2032 coin-cell types with layers of the active-material
electrode (f16 mm), VCOF-SPE (f18.0 mm), and lithium foil (f16 mm). The working
electrodes were prepared by mixing the active material LiFePO, (LFP) (70%), Super P
(10%), and 5wt% solution of PEO (20%, M, =103 Da). The mixture was placed in a
Fritsch planetary ball mill and mixed for 30 min (600 rpm) to obtain a homogeneous
slurry, which was then uniformly coated onto a carbon-coated Aluminum foil (battery
grade) current collector. The electrode mass loading was tuned at 1.5 mg/cm?. The
LFP/VCOF-SPE/Li half-cell measurements were performed within the potential range
of 2.5 to 4.0 V (vs. Li/Li") at different current densities. Galvanostatic studies were
performed on the coin cell type assembled in an argon-filled glove box using a

programmable battery tester (Interface 1010E, Gamry).

3.2 In-situ X-ray computed tomography (MicroCT) and

galvanostatic measurements

The ionic conductivities of the prepared VCOF-SPE membrane were characterized by

in-situ MicroCT in combination with electrochemical impedance spectroscopy (EIS).



X-ray Tomography measurements were conducted on the Li/VCOF-SEP/Li Tomo-cell
in the original state (25°C) and after several heating steps to 30, 40, 50, 60, and 70 °C3.
The detailed design and configuration of the cell are thoroughly sketched in the figure
shown below. The temperature was controlled and stabilized several hours before
measurements by a thermal amplifier. Full frequency range impedance spectra from 1
MHz to 0.01 Hz were measured during CT scanning as the cell was stabilized at preset
temperature conditions. A reference solid electrolyte was also prepared without VCOF-
1 for comparison, denoted as Ref-SPE.

The X-ray imaging facility built at Helmholtz-Zentrum Berlin (HZB) consisted of an
X-ray tube (Hamamatsu, L.8121-03) and a flat panel detector (Hamamatsu, C7942SK-
05). This device produces a cone beam from the microfocus X-ray source which allows
adjusting the field of view and the spatial resolution when the source-detector-distance
(SDD) and source-object-distance (SOD) were changed. These laboratory X-ray
tomographic measurements were performed using the X-ray tube voltage of 80 kV and
current of 125 pA and the source-to-sample and source-to-detector distances are 70 and
600 mm, respectively. 1000 projections were recorded during the rotation of 360° with
the exposure time of 2.1 s and 3 frames. For this setup, the obtained resolution is 5.83
um/voxel in the samples.

The lithium stripping/platting process in combination with MicroCT measurements was
further conducted on both VCOF-SPE and Ref-SPE samples after 0, 150, 200, and 300
hours cycling. The applied current and working temperature were set at 0.1 mA/cm?

and 60 °C throughout the measurements, respectively.
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Figure S1. Configuration of the tomography-cell
The calculation of the thickness of the SPE layers is based on different X-ray
attenuation coefficients of different materials. For this purpose, samples will be located
in front of the detector system to record transmission images. The obtained raw datasets
were normalized using Darkfield and Flatfield images by the ImageJ software.* To
ensure the accuracy of the calculation, the thickness was calculated at five different
rotation angles, and on each angle, five different positions were chosen for computing.
It should be noted that the operating temperature was slightly changed due to long-time
measurement in the ambient environment. Therefore, the sample temperature was
carefully controlled and monitored by a thermal infrared camera to minimize the

influence of working condition variation.
3.3 Li" transference number

The Li* transference number (tz-i) of the SPE at 60 °C was determined by the
alternating current AC/ direct current DC technique using the symmetrical cell of
LiVCOF-SPE|Li, which had been invented by Bruce and Vincent>®. The DC
polarization voltage of 10 mV was applied to the prepared cell. Before and after the DC
polarization, the cell's impedance spectra were performed in the frequency range from

1 MHz to 0.01 Hz. Both electrochemical measurements and DC polarization were
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performed using the Gamry instrument. The operating temperature was maintained at

60 °C by using an Arbin's Cell-Isolating Thermal Safety Chamber. The Li* transference
t :
number (~ L) of the DTP-SPE was calculated by the equation:

LOv-1Ry)
" 1y(Av - IgRy) (1)

Where [, and /; are initial current and steady current values, 4V is the applied potential
in the DC method, R, and R, are the interfacial resistance of the electrolyte film before

and after DC polarization obtained from the EIS analysis, respectively.

3.5 Pouch cell assembly and abuse test

Large format lithium-ion polymer solid electrolyte was carried out using pouch-cell
consisting of LFP as the positive electrode (active mass: 29.2 mg), a VCOF-SPE film
as the electrolyte, and lithium metal laminated on an aluminum current collector as the
negative electrode. The electrode size was optimized as 57 x 44 mm, while the solid
electrolyte film is larger ~ 2 mm in each dimension. The cell was then facially
constructed by the stacking method between layers. All components were vacuumed
and hot sealed inside an aluminum laminated film cover. Finally, the pouch-cell
pressure was retained by a homemade clamping tool to ensure the optimum contact of

electrolyte/electrode interfaces.

LFP/VCOF-SPE/Li pouch cells were connected to a red light-emitting diode (LED).
The abuse tests were performed at room temperature in the air. A stainless-steel needle
was used to penetrate the pouch cell in the nail penetration test, and stainless-steel
scissors were applied to cut more than half of the pouch cell during the cutting test.

Optical photographs were recorded to show the results of abuse tests.



4. Density Functional Theory (DFT) Calculations

DFT calculations were performed using GAUSSIAN 16 package to obtain optimized
molecular structures of single absorbents and their specific coordinations with
representative fragments of VCOF-1 structures. Molecular geometry optimizations
were carried out at the B3LYP/6-311+G(d,p) level of theory with explicit Grimme’s-
D3 dispersion correction, which is appropriate over medium (=2—5 A) and long ranges
(>5 A), and is an effective method to obtain binding structures of complexes with
reduced computational cost. Multiple starting configurations of the nicotine molecule
were optimized. Each of these was validated with no negative vibrational eigenvalues
in harmonic frequency analysis. The binding energy E;,q was calculated via Epjpg =
Eion-vcoF complexes Eton—Evcor, In which Ejon, Evcor, and Ejen-vcor complexes are the total
energies of absorbed ion molecules (Li-ions, TFSI anions, PEO fragments, etc.),
representative VCOF-1 fragments, and Ion-VCOF-1 complexes, respectively. A more
negative value of Ey;, indicates a much stronger interaction of ion molecules with

VCOF-1 fragments.

5. Atomistic simulations

Atomistic simulations of systems with and without VCOF-1 materials were performed
using the GROMACS package. The modeling system consisting of 200 LiTFSI ion
pairs, 400 PEO (n=4) chains, 30 PVDF (n=10) chains, and 15 COF fragments (the same
structure as we used in DFT calculations) was constructed, and a reference simulation
system without VCOF-1 fragments was also constructed for a comparative purpose.
The equations for the motion of all atoms were integrated using a classic Verlet leapfrog
integration algorithm with a time step of 1.0 fs. A cutoff radius of 1.6 nm was set for

short-range van der Waals interactions and real-space electrostatic interactions. The
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particle-mesh Ewald (PME) summation method with an interpolation order of 5 and a
Fourier grid spacing of 0.15 nm was employed to handle long-range electrostatic
interactions in reciprocal space. All simulation systems were first energetically
minimized using a steepest descent algorithm and thereafter annealed gradually from
600 K to room temperature (300 K) within 15 ns. All annealed simulation systems were
equilibrated in an isothermal-isobaric (NPT) ensemble for 25 ns of physical time
maintained using a Nosé-Hoover thermostat and a Parrinello-Rahman barostat with
time coupling constants of 0.4 and 0.2 ps, respectively, to control the temperature at
300 K and the pressure at 1 atm. Atomistic simulations were further performed in a
canonical ensemble (NVT) for 50 ns, and simulation trajectories were recorded at an

interval of 100 fs for further structural and dynamical analysis.
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Figure S2. (a) FTIR of the monomers and the VCOF-1. (b) 13C ss-NMR spectra, (c) N, sorption
data, (d) TEM image, (¢) SEM image of VCOF-1. (f) Fitted pore size distribution of VCOF-1

is based on the N, sorption data.

Pore size (nm)

In Figure S2, the FTIR peaks at ~ 3000 cm'! are assigned to the C-H Alkyl stretching.

The different morphologies from the TEM and SEM images originated from the
different sample preparation methods. For TEM measurement, VCOF-1 was dispersed
in ethanol and thoroughly sonicated before drop-casting onto the TEM grid. The
sonication exfoliated the 2D VCOF-1 layers which made the layered substructure to be
visualized. For SEM measurement, the VCOF-1 was directly pasted on the SEM sample

holder which made the VCOF-1 preserve its pristine macro morphology.
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Figure S3. (a) Photograph of the prepared Ref-SPE. (b) Comparison of the PXRD patterns of
LiTFSI, PVDF, VCOF-1, PEO, and VCOF-SPE. (An air-tight holder was applied for the

XRD measurements.) (¢) Full SEM image of the prepared VCOF-SPE.
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Figure S4. FTIR spectra of PVDF, LiTFSI, VCOF-1, PEO, Ref-SPE, and VCOF-SPE at (a)

1700 - 500 cm and (b) the full spectra.

The -CH,- peaks in PEO at 1359, 1341, 1281, and 1241 cm™! can be easily detected in
Ref-SPE and VCOF-SPE. But the peaks at 1359 and 1341 cm™!' merge to one peak with

the -SO,- the peak of LiTFSI’.

Table S1. FTIR peaks and assignments for VCOF-SPE, Ref-SPE, PEO, LiTFSI.
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Figure S5. XPS survey spectra of VCOF-SPE and Ref-SPE.
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Figure S6. (a) Comparison of the saturation recovery plot from ’Li sssNMR MAS spectra of

VCOF-SPE, Ref-SPE, and LiTFSI. (b) The full range of the spectra of LiTFSI.

The T, time of LiTFSI was fitted to be 118.90 s (Figure S6b).
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Figure S7. TGA curves of LiTFSI, PEO, VCOF, PVDF, Ref-SPE, and VCOF-SPE.
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Figure S9. Electrochemical impedance spectra of VCOF-SPE (a) and Ref-SPE (b) in a

temperature range of 10 — 80 °C.
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Figure. S10. The conductivity of VCOF-SPE as a function of content of VCOF-1.
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determined from extensive atomistic simulations (Supporting Information Section 5).
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Figure S13. (a) Chronoamperometry of the Li|Ref-SPE|Li cells at the potential of 10 mV. (b)

Comparison of the AC impedance of the cells before and after DC polarization at 60 °C.

Figure S14. Cross-section views of tomography cell and corresponding average thickness at

different temperatures.

The thickness of the VCOF-SPE was obtained and averaged by the ImageJ software.
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Figure S16. Rate performance of Li|VCOF-SPE|Li and Li|[Ref-SPE|Li cells at different current
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