Supporting information

MnO₂@CeO₂ Composite Cathode for Aqueous Zinc-ion Batteries: Enhanced Electrical Conductivity and Stability through Mn-O-Ce Bonds

College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China

*Corresponding author: Yang Jiao and Jianrong Chen; E-mail: yangjiao@zjnu.edu.cn and cjr@zjnu.cn. Fax: (+86)-0579-82291275.

Fig. S1 Morphology characterization: SEM images of (a, b) MnO_2 nanowires at different multiples. (c) X-ray energy spectrum analysis and corresponding element mapping images of MnO_2 .

Fig. S2 Morphology characterization: SEM images of (a, b) CeO_2 nanoparticles at different multiples. (c) X-ray energy spectrum analysis and corresponding element mapping images of CeO_{2_*}

Fig. S3 Electrochemical performance: (a, d) GCD curves of MnO₂@CeO₂; (b) MnO₂ and (c) CeO₂ at different current densities.

Fig. S4 Reaction kinetics analysis of MnO_2 and CeO_2 : CV curves at different scanning rates (a) CeO_2 ; (d) MnO_2 ; Graph of linear logarithm relationship between the scanning rate and the peak current response value (b) CeO_2 ; (e) MnO_2 ; The contribution ratios of capacitance control and diffusion control at different scanning rates (c) CeO_2 ; (f) MnO_2 .

Fig. S5 Four-probe conductivity test of MnO₂, CeO₂ and MnO₂@CeO₂.

Table 1	Comparison	with other	manganese-based	l materials
			0	

Materials	Rate performance	Reference
MnO ₂ @CeO ₂	355 mAh g^{-1} at 1 A g^{-1} , and with 89% capacity retention	This work
WillO2@eee02	after 1000 cycles at high	THIS WOLK
	current density of 1A g ⁻¹	
	$325 \text{ mAh g}^{-1} \text{ at } 100 \text{ mA g}^{-1},$	
MnO ₂ @NC	and 95% retention after 2500	1
	cycles	
	183.4 mAh g^{-1} at 0.5 A g^{-1} ,	
MnO ₂ @N	and with 83% capacity	2
	retention after 1000 cycles	

	324 mAh g ⁻¹		
	at 0.2 A g ⁻¹ and with 63.3%	3	
S-MnO ₂	capacity retention after 1000		
	cycles.		
	252 mAh g^{-1} at 0.1 A g^{-1} , and		
NM20	with 85.6% capacity retention	4	
	after 2500 cycles at 1A g ⁻¹		
	125 mAh g^{-1} at 2 A g^{-1} , and		
δ -MnO ₂ NDs	with 86.2% capacity retention	5	
	after 1000 cycles at high		
	current density of 2A g ⁻¹		
	194 mAh g^{-1} at 0.2 A g^{-1} , and		
α -MnO ₂	with 71% capacity retention	6	
	after 100 cycles at 0.3 A g ⁻¹		

- 1. X. Li, Q. Zhou, Z. Yang, X. Zhou, D. Qiu, H. Qiu, X. Huang and Y. Yu, *ENERGY & ENVIRONMENTAL MATERIALS*, **6**, e12340.
- 2. Y. Zhang, Y. Liu, Z. Liu, X. Wu, Y. Wen, H. Chen, X. Ni, G. Liu, J. Huang and S. Peng, JOURNAL OF ENERGY CHEMISTRY, 2022, **64**, 23-32.
- 3. Y. Zhao, P. Zhang, J. Liang, X. Xia, L. Ren, L. Song, W. Liu and X. Sun, *ENERGY* STORAGE MATERIALS, 2022, **47**, 424-433.
- 4. D. Zhang, J. Cao, X. Zhang, N. Insin, S. Wang, J. Han, Y. Zhao, J. Qin and Y. Huang, Advanced Functional Materials, 2021, **31**, 2009412.
- 5. H. Tang, W. Chen, N. Li, Z. Hu, L. Xiao, Y. Xie, L. Xi, L. Ni and Y. Zhu, *ENERGY* STORAGE MATERIALS, 2022, **48**, 335-343.
- 6. Y. Li, X. Li, H. Duan, S. Xie, R. Dai, J. Rong, F. Kang and L. Dong, *CHEMICAL* ENGINEERING JOURNAL, 2022, **441**, 136008.