Supporting Information

High-efficiency Purification of CH₄ and H₂ Energy Sources Enabled by a Phosphotungstic Acid-supported Os Single-atom Catalyst

Li-Long Zhang,^{1†} Ji Zheng,^{3†} Jinxing Gu,⁴ Zhuochun Huang,¹ Linguo Lu,² Hu Li,^{1,*} Zhongfang Chen,^{2,*} Song Yang,^{1,*}

¹ National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China

² Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA

³ College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China

⁴ Department of Chemical & Biological Engineering, Monash University, Clayton Campus, Victoria 3800, Australia

[†] Both authors contributed equally to this work.

* Correspondence:

E-mail: hli13@gzu.edu.cn (HL); zhongfang.chen1@upr.edu (ZC); jhzx.msm@gmail.com (SY)

Figure S1. Adsorption free energies of molecular and dissociative adsorption of one

 O_2 over SACs. Mn_1/PTA (a), Fe_1/PTA (b), Co_1/PTA (c), and Ni_1/PTA (d).

Figure S2. Adsorption free energies of molecular and dissociative adsorption of one

O₂ over SACs. Ru₁/PTA (a), Rh₁/PTA (b), Pd₁/PTA (c), and Re₁/PTA (d).

Figure S3. Adsorption free energies of molecular and dissociative adsorption of one O_2 over SACs. Ir₁/PTA (a) and Pt₁/PTA (b).

Figure S4. Atomic dipole moment corrected Hirshfeld (ADCH) populations of $2O@Os_1/PTA$ and $2O@Re_1/PTA$ systems (the values of oxygen atoms around the SACs are presented).

Figure S5. The adsorption free energies of the reactant and product over Re_1/PTA (a). The reaction free energies for the first and second CO, H_2 and CH_4 oxidation over Re_1/PTA (b).

Figure S6. Calculated free energy profiles (in kcal/mol) of CO oxidation over Os_1/PTA SACs in the gas phase and nine solvents.

Figure S7. Summed values of ^{Os}TS1, ^{Os}TS2, and ^{Os}TS3 over Os₁/PTA SACs in the gas phase and 11 solvents.

Figure S8. Side pathways of Os₁/PTA SACs-catalyzed CO oxidation.

Figure S9. Gibbs free energy barriers of ^{Os}TS1, ^{Os}TS2 and ^{Os}TS4 in the gas phase and

11 solvents.

Figure S10. Gibbs free energy barriers of ^{Os}TS3 and ^{Os}TS5 in the gas phase and 11 solvents.

Figure S11. Calculated Gibbs free energy profiles (in kcal/mol) of H_2 oxidation over Os_1/PTA SACs by O_b -bound site in five solvents.

Figure S12. The second H_2 dissociation process by O_c atom in seven solvents (a) and the corresponding free energy barriers (b).

Figure S13. Direct double H_2 oxidation pathway in the gas phase and 12 solvents (a) and the corresponding free energy barriers (b).

The rationale for using the implicit solvation model

Note that our reported computational results are based on implicit solvent models, which are more efficient for large-scale simulations. Considering that explicit solvent models typically provide a finer-grained and more accurate representation of solvation effects, we selected the pivotal intermediate $2O@Os_1/PTA$ as a representative to examine if the implicit models can give acceptable accuracy for the systems under study. Our calculations revealed that introducing six water molecules onto the catalyst's surface has minimal influence on the lengths of the two Os-O bonds (1.730 Å vs 1.729/1.734 Å, using implicit solvent models as shown in Figure S14). This phenomenon can be attributed to the saturation of the coordination of the Os site. Since the Os sites remain in a saturated state during the crucial step of the entire CO and H₂ oxidation process (Figures 4 and 5), explicit solvent models and implicit solvent models are expected to give us the same trend. Thus, we decided to use the computationally less demanding implicit solvent models throughout this study.

Figure S14. The optimized structure when introducing six water molecules onto the surface of $2O@Os_1/PTA$.

Figure S15. Most favorable catalytic cycles of Os_1/PTA SACs-catalyzed CO and H_2 oxidation in water and MeOH.

Supplementary Table S1. DFT-derived single point energy (in kcal/mol) for the clean M_1/PTA and adsorption complexes with one CH_4 , one CO, one CO_2 , one H_2O , one normally adsorbed O_2 (nO_2), and one dissociatively adsorbed O_2 (dO_2) with different spin states.

	Spin	Total energy	Total energy	y Relative energy		
M ₁ /POM	multiplicity	(a.u.)	(kcal/mol) (kcal/mol)			
		Clean M ₁ /POM	М			
Mn-PTA	1	-4270.51971	-2679793.8	56.5		
	3	-4270.56575	-2679822.7	27.6		
	5	-4270.60977	-2679850.3	0.0		
Fe-PTA	2	-4290.06260	-2692057.2	16.6		
	4	-4290.08900	-2692073.8	0.0		
	6	-4290.08905	-2692073.8	0.0		
Co-PTA	1	-4311.69391	-2705631.0	9.0		
	3	-4311.70822	-2705640.0	0.0		
	5	-4311.68176	-2705623.4	16.6		
Ni-PTA	2	-4335.91927	-2720832.7	0.0		
	4	-4335.89153	-2720815.3	17.4		
Ru-PTA	2	-4260.44962	-2673474.7	0.0		
	4	-4260.44598	-2673472.5	2.3		
	6	-4260.42461	-2673459.0	15.7		
Rh-PTA	1	-4276.06665	-2683274.6	0.0		
	3	-4276.06600	-2683274.2	0.4		
	5	-4276.03703	-2683256.0	18.6		
Pd-PTA	2	-4293.27934	-2694075.7	0.0		
	4	-4293.26462	-2694066.5	9.2		
Re-PTA	1	-4245.64559	-2664185.1	0.0		
	3	-4245.63651	-2664179.4	5.7		
	5	-4245.63991	-2664181.5	3.6		
Os-PTA	2	-4257.57246	-2671669.3	0.0		
	4	-4257.57145	-2671668.7	0.6		
	6	-4257.53900	-2671648.3	21.0		
Ir-PTA	1	-4271.21555	-2680230.5	1.5		
	3	-4271.21793	-2680232.0	0.0		
	5	-4271.16706	-2680200.0	31.9		
Pt-PTA	2	-4285.65713	-2689292.7	0.0		
	4	-4285.62569	-2689273.0	19.7		
		One CH ₄				
Mn-PTA	1	-4311.03861	-2705219.8	58.5		

	3	-4311.07858	-2705244.9	33.4
	5	-4311.13174	-2705278.3	0.0
Fe-PTA	2	-4330.58106	-2717482.9	23.1
	4	-4330.60689	-2717499.1	6.9
	6	-4330.61792	-2717506.1	0.0
Co-PTA	1	-4352.20648	-2731053.1	8.6
	3	-4352.22016	-2731061.7	0.0
	5	-4352.21048	-2731055.6	6.1
Ni-PTA	2	-4376.43400	-2746256.1	0.0
	4	-4376.41266	-2746242.7	13.4
Re-PTA	1	-4286.16320	-2689610.3	0.0
	3	-4286.15007	-2689602.0	8.2
	5	-4286.15636	-2689606.0	4.3
Ru-PTA	2	-4300.97238	-2698903.2	0.0
	4	-4300.96652	-2698899.5	3.7
	6	-4300.94714	-2698887.3	15.8
Rh-PTA	1	-4316.58986	-2708703.3	0.0
	3	-4316.58332	-2708699.2	4.1
	5	-4316.55919	-2708684.1	19.2
Pd-PTA	2	-4333.79600	-2719500.3	0.0
	4	-4333.78550	-2719493.7	6.6
Os-PTA	2	-4298.09417	-2697097.1	0.0
	4	-4298.08245	-2697089.7	7.4
	6	-4298.05055	-2697069.7	27.4
Ir-PTA	1	-4311.73948	-2705659.6	0.0
	3	-4311.73108	-2705654.4	5.3
	5	-4311.68877	-2705627.8	31.8
Pt-PTA	2	-4326.16903	-2714714.3	0.0
	4	-4326.14604	-2714699.9	14.4
		One CH ₃ OH		
Mn-PTA	1	-4386.27223	-2752429.7	54.1
	3	-4386.31864	-2752458.8	25.0
	5	-4386.35846	-2752483.8	0.0
Fe-PTA	2	-4405.81650	-2764693.9	22.3
	4	-4405.83793	-2764707.4	8.8
	6	-4405.85200	-2764716.2	0.0
Co-PTA	1	-4427.44635	-2778266.9	4.4
	3	-4427.45335	-2778271.3	0.0
	5	-4427.44519	-2778266.1	5.1
Ni-PTA	2	-4451.66267	-2793462.8	0.0
	4	-4451.64735	-2793453.2	9.6
Re-PTA	1	-4361.40554	-2736825.6	0.0
	3	-4361.38315	-2736811.5	14.1
	5	-4361.39191	-2736817.0	8.6

Ru-PTA	2	-4376.20468	-2746112.2	0.0
	4	-4376.19831	-2746108.2	4.0
	6	-4376.17855	-2746095.8	16.4
Rh-PTA	1	-4391.82321	-2755913.0	0.0
	3	-4391.81435	-2755907.4	5.6
	5	-4391.78751	-2755890.6	22.4
Pd-PTA	2	-4409.02888	-2766709.7	0.0
	4	-4409.01246	-2766699.4	10.3
Os-PTA	2	-4373.32876	-2744307.5	0.0
	4	-4373.32019	-2744302.2	5.4
	6	-4373.28666	-2744281.1	26.4
Ir-PTA	1	-4386.97240	-2752869.1	0.0
	3	-4386.96681	-2752865.5	3.5
	5	-4386.92287	-2752838.0	31.1
Pt-PTA	2	-4401.40414	-2761925.1	0.0
	4	-4401.37615	-2761907.6	17.6
		One ^m O ₂		
Mn-PTA	1	-4420.88473	-2774149.4	36.8
	3	-4420.94346	-2774186.2	0.0
	5	-4420.93664	-2774182.0	4.3
	7	-4420.92853	-2774176.9	9.4
Fe-PTA	2	-4440.41384	-2786404.1	2.1
	4	-4440.41719	-2786406.2	0.0
	6	-4440.40724	-2786400.0	6.2
	8	-4440.41077	-2786402.2	4.0
Co-PTA	1	-4461.99772	-2799948.2	16.2
	3	-4462.02343	-2799964.3	0.1
	5	-4462.02354	-2799964.4	0.0
	7	-4462.00271	-2799951.3	13.1
Ni-PTA	2	-4486.23638	-2815158.2	0.0
	4	-4486.23490	-2815157.3	0.9
	6	-4486.20389	-2815137.8	20.4
Re-PTA	1	-4396.06972	-2758577.7	0.0
	3	-4396.05660	-2758569.5	8.2
Ru-PTA	2	-4410.79715	-2767819.3	3.1
	4	-4410.80215	-2767822.5	0.0
	6	-4410.76071	-2767796.5	26.0
	8	-4410.74244	-2767785.0	37.5
Rh-PTA	1	-4426.38879	-2777603.2	2.8
	3	-4426.39327	-2777606.0	0.0
	5	-4426.38326	-2777599.8	6.3
	7	-4426.35477	-2777581.9	24.2
Pd-PTA	2	-4443.60144	-2788404.3	0.0
	4	-4443.59585	-2788400.8	3.5

	6	-4443.58295	-2788392.7	11.6
Os-PTA	2	-4407.93810	-2766025.2	9.3
	4	-4407.95296	-2766034.6	0.0
	6	-4407.89337	-2765997.2	37.4
	8	-4407.81315	-2765946.8	50.3
Ir-PTA	1	-4421.55419	-2774569.5	2.3
	3	-4421.55781	-2774571.7	0.0
	5	-4421.53213	-2774555.6	16.1
		-4421.48214	-2774524.3	47.5
Pt-PTA	2	-4435.98128	-2783622.6	0.0
	4	-4435.95388	-2783605.4	17.2
	6	-4435.94308	-2783598.6	24.0
		One ^d O ₂		
Mn-PTA	5	-4420.84582	-2774125.0	0.0
Fe-PTA	6	-4440.34505	-2786360.9	0.0
Co-PTA	3	-4461.91724	-2799897.7	16.3
	5	-4461.94322	-2799914.0	0.0
Ni-PTA	4	-4486.11764	-2815083.7	0.0
Re-PTA	1	-4396.18272	-2758648.6	0.0
	3	-4396.10170	-2758597.8	50.8
	5	-4396.00798	-2758539.0	109.7
Ru-PTA	2	-4410.80411	-2767823.7	0.0
	4	-4410.79059	-2767815.2	8.5
	6	-4410.74281	-2767785.2	38.5
Rh-PTA	1	-4426.32702	-2777564.5	15.3
	3	-4426.32197	-2777561.3	18.5
	5	-4426.35144	-2777579.8	0.0
Pd-PTA	2	-4443.49566	-2788338.0	5.0
	4	-4443.50367	-2788343.0	0.0
	6	-4443.49881	-2788339.9	3.1
Os-PTA	2	-4408.03006	-2766082.9	0.0
	4	-4407.98884	-2766057.1	25.9
	6	-4407.90816	-2766006.5	50.6
Ir-PTA	1	-4421.57492	-2774582.5	1.1
	3	-4421.57664	-2774583.6	0.0
	5	-4421.56093	-2774573.7	9.9
Pt-PTA	2	-4435.92422	-2783586.8	0.0
	4	-4435.91863	-2783583.3	3.5
		One CO		
Mn-PTA	1	-4497.12432	-2821990.5	38.1
	3	-4497.16143	-2822013.8	14.8
	5	-4497.18505	-2822028.6	0.0
Fe-PTA	2	-4516.66332	-2834251.4	8.7
	4	-4516.66232	-2834250.8	9.3

	6	-4516.67715	-2834260.1	0.0
Co-PTA	1	-4538.29646	-2847826.4	0.0
	3	-4538.27418	-2847812.4	14.0
	5	-4538.27340	-2847811.9	14.5
Ni-PTA	2	-4487.08572	-2815691.2	0.0
	4	-4487.05084	-2815669.3	21.9
Re-PTA	1	-4359.01450	-2735325.2	0.0
	3	-4359.00950	-2735322.1	3.1
	5	-4359.00051	-2735316.4	8.8
Ru-PTA	2	-4487.08572	-2815691.2	0.0
	4	-4487.05084	-2815669.3	21.9
	6	-4487.05085	-2815669.3	21.9
Rh-PTA	1	-4502.71315	-2825497.5	0.0
	3	-4502.68020	-2825476.9	20.7
	5	-4502.62836	-2825444.3	53.2
Pd-PTA	2	-4406.62236	-2765199.6	0.0
	4	-4406.60084	-2765186.1	13.5
Os-PTA	2	-4484.27338	-2813926.4	0.0
	4	-4484.20954	-2813886.3	40.1
	6	-4484.12981	-2813836.3	90.1
Ir-PTA	1	-4497.91688	-2822487.8	0.0
	3	-4497.86748	-2822456.8	31.0
	5	-4497.78807	-2822407.0	80.8
Pt-PTA	2	-4512.30149	-2831514.3	0.0
	4	-4512.24197	-2831477.0	37.4
		One CO ₂		
Mn-PTA	1	-4459.12126	-2798143.2	55.1
	3	-4459.16282	-2798169.3	29.1
	5	-4459.20911	-2798198.3	0.0
Fe-PTA	2	-4478.66166	-2810405.0	21.4
	4	-4478.68472	-2810419.5	7.0
	6	-4478.69583	-2810426.4	0.0
Co-PTA	1	-4500.28927	-2823976.5	6.7
	3	-4500.29996	-2823983.2	0.0
	5	-4500.28796	-2823975.7	7.5
Ni-PTA	2	-4487.08572	-2815691.2	0.0
	4	-4487.05084	-2815669.3	21.9
Ru-PTA	2	-4449.05354	-2791825.6	0.0
	4	-4449.04539	-2791820.5	5.1
	6	-4449.02519	-2791807.8	17.8
Rh-PTA	1	-4464.67014	-2801625.2	0.0
	3	-4464.66358	-2801621.0	4.1
	5	-4464.63687	-2801604.3	20.9
Rh-PTA	1	-4502.71315	-2825497.5	0.0

	3	-4502.68020	-2825476.9	20.7
	5	-4502.62836	-2825444.3	53.2
Pd-PTA	2	-4481.87511	-2812421.5	0.0
	4	-4481.86364	-2812414.3	7.2
Re-PTA	2	-4484.27338	-2813926.4	0.0
	4	-4484.20954	-2813886.3	40.1
Os-PTA	2	-4446.17477	-2790019.1	0.0
	4	-4446.16263	-2790011.5	7.6
	6	-4446.12821	-2789989.9	29.2
Ir-PTA	1	-4459.81844	-2798580.7	0.0
	3	-4459.81168	-2798576.4	4.2
	5	-4459.76560	-2798547.5	33.2
Pt-PTA	2	-4474.24838	-2807635.6	0.0
	4	-4474.22417	-2807620.4	15.2
		One H ₂ O		
Mn-PTA	1	-4346.97828	-2727772.3	52.5
	3	-4347.02161	-2727799.5	25.3
	5	-4347.06190	-2727824.8	0.0
Fe-PTA	2	-4366.52017	-2740035.1	21.4
	4	-4366.54050	-2740047.8	8.6
	6	-4366.55419	-2740056.4	0.0
Co-PTA	1	-4388.15104	-2753608.7	3.0
	3	-4388.15576	-2753611.6	0.0
	5	-4388.14757	-2753606.5	5.2
Ni-PTA	2	-4412.36651	-2768804.1	0.0
	4	-4412.35015	-2768793.8	10.3
Ru-PTA	2	-4336.91063	-2721454.8	0.0
	4	-4336.90319	-2721450.1	4.7
	6	-4336.88142	-2721436.5	18.3
Rh-PTA	1	-4352.52920	-2731255.6	0.0
	3	-4352.50648	-2731241.3	14.3
	5	-4352.49043	-2731231.3	24.3
Rh-PTA	1	-4369.73309	-2742051.2	0.0
	3	-4369.71663	-2742040.9	10.3
	5	-4322.10867	-2712166.4	0.0
Pd-PTA	2	-4322.10707	-2712165.4	1.0
	4	-4322.09281	-2712156.5	10.0
Re-PTA	2	-4334.03240	-2719648.7	0.0
	4	-4334.02476	-2719643.9	4.8
Os-PTA	2	-4333.98865	-2719621.2	27.5
	4	-4347.67891	-2728212.0	0.0
	6	-4347.67111	-2728207.1	4.9
Ir-PTA	1	-4347.67889	-2728212.0	0.0
	3	-4362.10926	-2737267.2	0.0

	5	-4362.07955	-2737248.5	18.6
Pt-PTA	2	-4346.97828	-2727772.3	52.5
	4	-4347.02161	-2727799.5	25.3

Table S2. The E_a values (in kcal/mol) of RDS for CO and H ₂ oxidation in the gas phase
as well as in water, and MeOH at various temperatures (from 250 to 450 K).

Temp.		CO oxidation H ₂ oxidation				
(K)	$E_{\rm a}$ (gas)	$E_{\rm a}$ (water)	E _a (MeOH)	$E_{\rm a}$ (gas)	$E_{\rm a}$ (water)	E _a (MeOH)
250	33.7	18.5	19.5	38.4	26.1	28.2
275	33.7	18.5	19.5	39.0	26.8	28.8
300	33.7	18.5	19.5	39.7	27.5	29.5
325	33.7	18.5	19.5	40.4	28.2	30.3
350	33.7	18.5	19.5	41.1	28.9	31.0
375	33.7	18.5	19.5	41.8	29.6	31.7
400	33.7	18.4	19.4	42.5	30.3	32.4
425	33.6	18.4	19.4	43.2	31.0	33.2
450	33.6	18.4	19.4	43.9	31.7	33.9

Table S3. The reaction rates (k) of RDS for CO and H₂ oxidation in water and MeOH at various temperatures (from 250 to 450 K).

Temp.	CO ox	idation	H_2 oxidation			
(K)	k (water)	k (MeOH)	k (water)	k (MeOH)		
250	3.244E-04	4.330E-05	7.340E-11	1.284E-12		
275	1.121E-02	1.797E-03	2.831E-09	6.898E-11		
300	2.126E-01	3.970E-02	5.789E-08	1.890E-09		
325	2.542E+00	5.400E-01	7.489E-07	3.085E-08		
350	2.143E+01	5.160E+00	6.758E-06	3.396E-07		
375	1.367E+02	3.570E+01	4.448E-05	2.657E-06		
400	6.942E+02	1.972E+02	2.353E-04	1.614E-05		
425	2.889E+03	8.836E+02	1.003E-03	7.956E-05		
450	1.029E+04	3.363E+03	3.690E-03	3.296E-04		

Table S4. The Os center's Hirshfeld charges (q, e) and Hirshfeld spin populations (ρ, e) of Os₁/PTA in gas and various solvents.

Gas/	Gas	тиг	Water	CCL	DLU	DhC1	DhMa	ACE	МаОН	MeCN	DMSO	CHCI.
Solvents	Gas	1111	water		1 111 1	THE		ACL	WICOII	WICCIN	DNISO	CHCI3
q	0.490	0.743	1.023	0.574	0.576	0.702	0.581	0.898	0.940	0.956	0.920	0.717
ρ	0.870	1.006	1.353	0.885	0.918	0.963	0.887	1.194	1.230	1.255	1.221	0.961