Supporting Information

Triallyl isocyanurate enabled SPAN-based organosulfur featuring high sulfur& selenium loading for advanced Li/Na-S batteries

Qiang Wu,^a Mingsheng Qin,^{ab} Yuanke Wu,^{ab} Haolin Zhu,^a Shijie Cheng,^a Jia Xie^{*a}

^aState Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China

^bState Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China

* Corresponding authors: xiejia@hust.edu.cn (Jia Xie)

Fig. S1. SEM images of PAN fiber, PAN-TI11 fiber and PAN-TI12 fiber, respectively.

Table S1. Mass fraction of elements in 0F, 1F and 2F composites by elemental analysis.

Materials	C (%)	N (%)	H (%)	S (%)	Se (%)	S&Se (%)
0F	38.9	14.4	1.4	40.1	5.2	45.3
1F	34.2	1.1	10.5	47.9	6.3	54.2
2F	31.2	1.1	9.9	51.1	6.7	57.8

Fig. S2. FT-IR spectrum of TI and PAN.

Fig. S3. (a) FT-IR spectrum of PAN fiber, PAN-TI11 fiber and PAN-TI12; (b) The partial

enlarged FT-IR spectrum.

Fig. S4. Local enlarged Raman spectrums of $Se_{0.05}S_{0.95}PAN$ fiber, $Se_{0.05}S_{0.95}PAN$ -TI11 and 12 fibers.

Fig. S5. (a) C 1s and (b) S 2p + Se 3p XPS spectra of Se_{0.05}S_{0.95}PAN-TI12 fiber.

Fig. S6. The electrochemical impedance spectroscopy (EIS) of 0F, 1F and 2F.

Fig. S7. CV curves of (a) 0F and (b) 2F from 0.1 to 0.5 mV s⁻¹.

Fig. S8. The discharge-charge curves of 2F at various cycles.

Fig. S9. The discharge-charge curves of (a) 0F and (b) 2F at various rates.

Fig. S10. Long cycling performance of 1F at 3C.

Fig. S11. The discharge-charge curves of 1F at different cycles.

Cathode Materials	Reversible composite capacity (mAh g ⁻¹)	Capacity retention (%)	Rate capability (mAh g ⁻¹)	S&Se content (%)	Ref.
SVF	361.0(1C)	94.5(150cycle)		37.8%	1
	254.8(2C)	89.0(300cycle)	113.4(4C)		
I-S@pPAN	538(2C)	85.0%(1000cycle)	226.5(8C)	42.5%	2
CoS ₂ @-SPAN- CNT	380.2(1C)	98.8%(400cycle)	96.3(5C)	43.2%	3
SPAN	481.2(0.5C)	83.3%(350cycle)	\	40.1%	4
SPAN	450(0.5C)	99.3%(800cycle)	366.7(3C)	37.4%	5
Se _{0.06} SPAN	581.8(0.13C)	91.6%(500cycle)		47.3%	6
	572(0.26C)	72.8%(800cycle)	427.5(6.5C)		
FD/C- Se _{0.05} S _{0.95} PAN	602(1C)	96.3%(400cycle)	490.0(2.5C)	48.5%	7
pPAN/SeS ₂	548.7(3.6C)	72.7%(2000cycle)	447.7(4.4C)	63.0%	8
SPAN-CNT-12	483.8(0.5C)	100%(800cycle)	362.9(1C)	41.0%	9
SPAN-CNT20	564.2(0.5C)	93.2%(250cycle)			
	554.1(1C)	79.8%(500cycle)	9.8%(500cycle) 403.0(5C)		10
H-SPAN	514.7(0.1C)	100%(300cycle)	205.6(1C)	41.2%	11
S@PAN/S7Se	575.3(1.2C)	76.6%(500cycle)	453.6(3.6C)	68%	12
1F	627.1(1C)	97.4%(450cycle)			This
	526.7(2C)	89.4%(1000cycle)	405.1(8C)	54.2%	work

Table S2. Cycle performance and high-rate capability of the 1F electrode compare with

 previously reported SPAN-based electrodes.

Fig. S12. The discharge-charge curves of 1F at different rates under practical conditions.

Fig. S13. The discharge-charge curves of 1F at different cycles under practical conditions.

Cathode Materials	S&Se loading (mg cm ⁻²)	E/S (µL mg ⁻¹)	Areal capacity (mAh cm ⁻²)	Capacity Retention (%)	Ref.	
S@PAN/S ₇ Se	5.0	10	5	40 cycle (88%)	12	
pPAN/SeS ₂	5.0	50	4.5	50 cycle (90%)	8	
Se _{0.05} S _{0.95} PAN	4.9	10	4.5	150 cycle (82%)	13	
S/CTB/CNT- P10	6	4	4.6	100 cycle (75%)	14	
G-g-sPS@S	6	15	6	50 cycle (69%)	15	
AL-Lys-D cathode	5.75	20	4.2	150 cycle (69%)	16	
	6.5	5	7	70 cycle (93%)		
1F	5.5	5	6	200 cycle (84%)	This work	

Table S3. Comparison of the electrochemical performance of 1F with previously reported

 cathodes under harsh conditions.

Fig. S14. The CV curves of (a) Na-0F battery and (b) Na-1F battery at 0.1 mV s⁻¹.

References

1 Y. Liu, A. K. Haridas, Y. Lee, K.-K. Cho and J.-H. Ahn, *Appl. Surf. Sci.* 2019, **472**, 135–142.

2 S. Ma, Z. Zhang, Y. Wang, Z. Yu, C. Cui, M. He, H. Huo, G. Yin and P. Zuo, *Chem. Eng. J.* 2021, **418**, 129410.

A. Abdul Razzaq, X. Yuan, Y. Chen, J. Hu, Q. Mu, Y. Ma, X. Zhao, L. Miao, J.-H.
 Ahn, Y. Peng and Z. Deng, *J. Mater. Chem. A* 2020, 8, 1298–1306.

4 Z. Shen, W. Zhang, S. Mao, S. Li, X. Wang and Y. Lu, *ACS Energy Lett.* 2021, 6, 2673–2681.

5 Y. He, P. Zou, S.-M. Bak, C. Wang, R. Zhang, L. Yao, Y. Du, E. Hu, R. Lin and H. L. Xin, *ACS Energy Lett.* 2022, 7, 2866–2875.

K. Chen, L. Peng, L. Wang, J. Yang, Z. Hao, J. Xiang, K. Yuan, Y. Huang, B. Shan, L.Yuan and J. Xie, *Nat. Commun.* 2019, 10, 1021.

Z. Han, S. Li, R. Xiong, Z. Jiang, M. Sun, W. Hu, L. Peng, R. He, H. Zhou, C. Yu, S.
 Cheng and J. Xie, *Adv. Funct. Mater.* 2022, **32**, 2108669.

8 Z. Li, J. Zhang, Y. Lu and X. W. Lou, Sci. Adv. 2018, 4, eaat1687.

- X. Wang, Y. Qian, L. Wang, H. Yang, H. Li, Y. Zhao and T. Liu, *Adv. Funct. Mater.*2019, 29, 1902929.
- A. Abdul Razzaq, Y. Yao, R. Shah, P. Qi, L. Miao, M. Chen, X. Zhao, Y. Peng and Z. Deng, *Energy Stor. Mater* 2019, 16, 194–202.
- X. Huang, J. Liu, Z. Huang, X. Ke, L. Liu, N. Wang, J. Liu, Z. Guo, Y. Yang and Z.Shi, *Electrochim. Acta* 2020, **333**, 135493.
- 12 B. He, Z. Rao, Z. Cheng, D. Liu, D. He, J. Chen, Z. Miao, L. Yuan, Z. Li and Y. Huang, *Adv. Energy Mater.* 2021, **11**, 2003690.
- 13 Z. Jiang, Z. Zeng, X. Liang, L. Yang, W. Hu, C. Zhang, Z. Han, J. Feng and J. Xie, *Adv. Funct. Mater.* 2021, **31**, 2005991.
- 14 H. Chen, X. Zhang, S. Li and Y. Zheng, ACS Energy Lett. 2023, 8, 619.
- 15 J. Wu, J. Huang, Y. Cui, D. Miao, X. Ke, Y. Lu and D. Wu, *Adv. Mater.* 2023, **35**, 2211471.
- 16 Z. Chen, M. Lu, Y. Qian, Y. Yang, J. Liu, Z. Lin, D. Yang, J. Lu and X. Qiu, *Adv. Energy Mater.* 2023, **13**, 2300092.