Supporting Information for

High-Throughput Computational Discovery of 3,218 Ultralow Thermal Conductivity and Dynamically Stable Materials by Dual Machine Learning Models

Joshua Ojih,1 Chen Shen,2 Alejandro Rodriguez,1 Uche Onyekpe,3 Hongbin Zhang,2,* Kamal Choudhary,4 and Ming Hu1,*

1Department of Mechanical Engineering, University of South Carolina, SC 29208, USA
2Institute of Materials Science, Technical University of Darmstadt, Darmstadt 64287, Germany
3Centre for Computational Sciences and Mathematical Modelling, Coventry University, Priory Road, Coventry, CV1 5FB, UK
4Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

* Authors to whom all correspondence should be addressed. E-Mail: hzhang@tmm.tu-darmstadt.de (H.Z.); hu@sc.edu (M.H.)
Figure S1: Overview of the workflow. After training classification model and predicting stable structures (Step 1), step 2 is to train and screen the stable structures for low LTC. Step 3 and step 4 are recommendation and verification of low LTC structures, respectively.
Figure S2: (a) Outliers within the independent variables for the machine learning classification models. Panel (b) explains the boxplot, showing the outliers.
Figure S3: Phonon dispersions of selected structures (a) Br$_5$Cs$_3$Zn, (b) Cl$_6$PtRb$_2$, (c) AuBr$_5$ClCs, and (d) Br$_6$Cs$_2$Pt along high symmetry paths. The non-negative phonon dispersions prove the thermodynamic stability of the structures. The low-lying acoustic phonon frequencies are also clearly seen, which is partially responsible for their ultralow lattice thermal conductivity.
Figure S4: Testing results of P_3 parameter for the three GNN predictive models for 808 structures: (a) OGCNN, (b) deeperGATGNN, and (c) ALIGNN.
Figure S5: Testing results of mean squared displacement (MSD) of three GNN predictive models for 808 structures: (a) OGCNN, (b) DeeperGATGNN, and (c) ALIGNN.
Figure S6: (a) DFT calculated P_3 parameter versus LTC, (b) ALIGNN model predicted P_3 parameter versus LTC, (c) DFT calculated MSD versus LTC, (d) ALIGNN model predicted MSD versus LTC.