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Calculations for electromagnetic absorbing performance
The reflection loss (RL) of absorbers were performed according to the

transmission line Equation (1) and (2) as follows'?2,

u 2nfd
Z, = ZO\/ztanh IR o /,urer]
r (1)
Z. -7
RL(dB) = 20log (‘"—0)
intZy ©)

where Z;, and Z, are input and free space impedance, respectively. x, and g, are
the complex permeability and complex permittivity of free space. u and ¢ are the
complex permeability and complex permittivity obtained from actual measurement. f°
is the frequency of microwave, ¢ is the thickness of the absorber, and c is the light
speed.

The Debye relaxation formula can describe the relationship between €' and g"34:
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where g is the stationary dielectric constant and &, is the dielectric constant at

the high-frequency limit.

Furthermore, the dielectric loss can be classified into conduction loss (g.") and
polarization loss (g,") according to Debye theory, and the imaginary part €" is
described as follows: 4°
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Where SS, 800, 80, @ and T are the static dielectric constant, relative dielectric
constant at the high-frequency limit, vacuum permittivity, angular frequency and
polarization relaxation time.

The dielectric loss and magnetic loss performance of the absorbers was by using

the attenuation constant (). The o values were calculated as follows®:
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In several other reports, a delta-function method has been suggested to examine

the degree of characteristic impedance matching, as follows”:8:
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According to previous studies, a smaller |A| value of absorber (IA| < 0.4)

represents better impedance matching’-3.

DFT Calculation

The density functional theory (DFT) is a quantum-mechanical method to study
the electronic structure of a many-electron system. Typically, each electron contains
three spatial variables, so the multielectron wave function has 3N variables (N is the
number of electrons). Since the electron density is a function of only three variables,
the multielectron wave function problem can be converted to an electron density
problem. According to the Kohn-Sham equation, all physical quantities in the non-
uniform electron gas model system can be expressed as generalized functions of the
ground state electron density®:
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It is generally assumed that the electron density is uniformly distributed, so the
uniform electron gas density function can be used to calculate the exchange-
correlation energy generalization for non-uniform electron gas by following
equation!?:

Erdn(n)] = f n(r)e, [n(r)]dr 10)

Where, x[MM] s the exchange-correlation energy generalization of a



homogeneous electron gas. However, in practice, the electron density is not uniformly
distributed. Therefore, the local density approximation is only a rather crude single-
electron approximation with poor accuracy. In order to be closer to the actual material
system, it is necessary to introduce the generalized gradient approximation (GGA) to

exact the exchange the correlation energy functionals accurately as follow!!:

E (n(r)) = f n(re, [n()]dr + ECCA(n(r),vn(r) (11)

The Vienna ab initio simulation package (VASP) software was used to perform
all DFT calculations. The nuclei-electron and the electron exchange correlation
interactions were described by the projector augmented wave (PAW) potentials!? and
the GGA'3. The cut-off energy for plane wave is set to 400 eV. The energy criterion is
set to 10—4 eV in iterative solution of the Kohn-Sham equation. A vacuum layer of 10
A is added perpendicular to the sheet to avoid artificial interaction between periodic
images. K-space was sampled with a grid of 5x5x%1 under the Monkhorst-Pack
scheme due to the supercell. All the structures are relaxed until the residual forces on

the atoms have declined to less than 0.03 eV/A.

Besides, to describe the polarization ability for the four model structures, the

dipole moment P was calculated by following equation:

B 3
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Where R center is the observation sites, and d represents the displacement vector
between positive and negative charge!#!'7. And the electric polarizability could be

further calculated by following equation:

ZP/szxegoE 03

where, AV, ¢, and E represent the volume element, the vacuum permittivity and the
electric field, respectively!s.
Finite Element Simulation

The exact sizes numerical models were developed in COMSOL software to

study electric field distribution and electric energy loss distribution of absorber by the



limited integral method. Incident microwaves with an excitation power of 1 W from
the source are injected into the absorber along the z-axis (x-axis in the direction of
magnetic field polarization and y-axis in the direction of electric field polarization).
Exactly matched layers are used at the top and bottom of the computational domain to
absorb the reflected and transmitted microwaves, respectively. The electromagnetic
field in the simulation domain was obtained by solving Maxwell equations in the

frequency domain.



Figure S1. The crystal structure models of (a) S-0, (b) S-1, (c) S-2 and (d) S-3 used
for the DFT calculation.
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Figure S3. a-d) N, adsorption-desorption isothermals and e-h) pore size distributions

of all samples.
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Figure S4. High resolution O 1s spectra of S-0 and S-1
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Figure S5. High resolution S 2p spectra of S-1, S-2 and S-3.
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Fig. S6. (a, b, c, d) The digital images and (e, f, g, h) distribution curves of the C, O, S,

Sn elements in the vertical direction of S-0, S-1, S-2 and S-3 absorbers.
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Figure S7. (a) The dielectric loss tangents (tande) and (b) attenuation constants (o) of
S-0, S-1, S-2 and S-3 absorbers.
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Figure S8. The Cole-Cole curves and enlarge image of a) S-0, b) S-1, ¢) S-2, and d)

Figure S9. The TEM images and off-axis electron holograms of (a;-az) S-0, (b;-bs) S-
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S-3 absorbers.




1, (ci-c3) S-2 and (d;-d3) S-3 absorbers.
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Figure S10. The scattered field distribution of S-2 sample at the incidence of
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Figure S11. The 2D projection maps of a) S-0, b) S-1, ¢) S-2, d) S-3.
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Figure S12. The complex permittivity and reflection loss of pure carbon cloth.
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Figure S13. The calculated 2D |Al-f maps of (a) S-0, (b) S-1, (c) S-2, and (d) S-3
absorbers.
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Figure S14. The detailed comparison of EMW absorption performances comparison
of typical carbon fiber or carbon cloth based composites in previous researches.
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Figure S15. The long-term temperature-time curve at 3V driven voltages of S-2
sample

Table S1. The calculated dipole moment and polarization

Samples Dipole moment (e*A) Polarization (C/m?)
S-0 -0.481535 -0.192961779
S-1 -13.300412 -0.466408238
S-2 -25.131208 -0.679365423
S-3 -0.000521 -0.000595551

Table S2. The EMW absorption performances of typical carbon fiber or carbon cloth
based composites in previous researches and this work.

Sample RLmin EAB Thickness Filler Ref
(dB) (GHz) (mm) load.ing
ratio
(Wt%)
MnO,@CC -53.2 5.84 2.0 25 19
CC@ZnO -43.6 6.7 2 40 20
FeC/CF -39.2 4.44 1.4 40 21
Co@NCNTSs/CF 57.8 4.5 2.0 15 2
Fe304/CF -48.2 5.1 1.9 30 23
ZnO@CC -47.3 4.0 2.5 20 24
CF@MXene@MoS, -61.51 7.6 35&2.1 20 2
NiCo-APs@HCC -41.8 5.8 2.29 20 26
ZnS@CC -52.5 5.1 1.9 25 27

Fe;C@NCF/Fe@NCNT  -49.56 4 1.5 35 28



S-1 -32.95 3.87 1.5 3 This work

S-2 -50.9 4.18 5&1.5 3 This work
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