Ppb-level detection of isopropanol based on porous ZnSnO₃/Ag through the synergy effects of Ag and amorphous nanocubes structure

Fangling Zhou,^a Zhuangzhuang Mu,^a Zhenyu Yuan,^{*abcd} Hongmin Zhu,^a Xin Yan,^{*a}

Hongliang Gao abcd and Fanli Meng*abcd

a Key College of Information Science and Engineering, Northeastern University, Shenyang 110819, China. E-mail: mengfanli@ise.neu.edu.cn

b Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao,066004, China

c National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China

d Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, China

Corresponding authors. E-mail: mengfanli@ise.neu.edu.cn

Fig. S1 Schematic diagram of the static testing device.

Fig. S2 XRD patterns of the as-prepared ZnSnO₃/Ag and pure ZnSnO₃ samples.

Fig. S3 FTIR spectra of ZnSnO₃/Ag and pure ZnSnO₃ samples.

Fig. S4 EDS of ZnSnO₃/Ag.

Fig. S5 Baseline resistance values of ZnSnO₃/Ag and ZnSnO₃ sensors at different temperatures.

Fig. S6 (a) Comparison of response to 10 ppm isopropanol in the presence of 1, 3, 5, 10 ppm ethanol at 250 °C for the ZnSnO₃/Ag-3 sensor. (b) Measured isopropanol concentrations corresponding to the presence of different concentrations of ethanol.