1	Counterion Chemistry of 5-Halo (X: Cl, Br, I)-Uracil Derived Carbon
2	Nitride: Unlocking Enhanced Photocatalytic Performance
3	Toshali Bhoyar, B. Moses Abraham, Akanksha Gupta, Dong Jin Kim, Nilesh R. Manwar,
4	Kedhareswara Sairam Pasupuleti, Devthade Vidyasagar,* Suresh S. Umare*
5	
6	
7	The Supporting information contains 22 Figures, 4 Tables, References.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
25 24	
2 - 25	
26	
27	
28	
29	
30	
31	
32	
33	

34 Table of contents

Section S1. Characterization details	S4
Figure S1. Fourier transform infrared spectra of PCN and XUCN catalyst.	S5
Figure S2. (A) Cross polarized magic angle spinning (CP-MAS) ¹³ C nuclear	S6
magnetic resonance (NMR) spectra of PCN and BUCN catalyst, (B) optimized	
structure of 5-bromouracil doped PCN catalyst highlighting the different carbon	
atoms in the structure, and (C) high resolution CP-MAS ¹³ C NMR spectra of PCN	
and BUCN.	
Figure S3. (A) UV-vis DRS spectra, and (B) Tauc plot (with mid-gap states	87
energy as the inset) of PCN and XUCN catalyst.	57
Figure S4. High resolution deconvoluted N1s X-ray photoelectron spectra for	60
PCN and XUCN catalyst.	50
Figure S5. SEM image of PCN	S9
Figure S6. TEM image of PCN	S10
Figure S7. Energy dispersive X-ray (EDX) mapping for C, N, O, and Cl and	011
EDX spectrum of CUCN.	511
Figure S8. Energy dispersive X-ray (EDX) mapping for C, N, O, and Br and	617
EDX spectrum of BUCN.	512
Figure S9. Energy dispersive X-ray (EDX) mapping for C, N, O, and I and EDX	612
spectrum of IUCN.	515
Figure S10. Electron spin resonance (ESR) spectra of PCN and XUCN catalysts.	Q14
	514
Figure S11. Cyclic photocatalytic H ₂ O ₂ generation over BUCN catalyst to check	Q1 <i>5</i>
durability for five cycles.	515
Figure S12. (A) XRD, (B) FTIR, (C) UV-DRS spectra, and (D) KM plot of	
freshly prepared BUCN (Fresh) and recycled BUCN (Recycled) catalyst after	S16
fifth cycle of H_2O_2 generation.	
Figure S13. Cr (VI) reduction rate constant calculated by pseudo first order	C17
kinetic fitting.	517
Figure S14. UV-Visible absorption spectra for Cr (VI) reaction mixture on light	C10
irradiation with time.	518
Figure S15. Photocatalytic activity evaluation of BUCN catalyst for increased	610
Cr (VI) concentration up-to 50 mg L ⁻¹ .	319

Figure S16. Photocatalytic Cr (VI) reduction performance evaluated by varying	620						
BUCN catalyst's dosage.	520						
Figure S17. Effect of pH on Cr (VI) reduction activity by BUCN catalyst.	S21						
Figure S18. Rhodamine B rate constant values for PCN and XUCN catalysts							
calculated by pseudo first order kinetic fit model.	522						
Figure S19. Density of states of calculated for PCN, BU, and BUCN.	S23						
Figure S20. The photocatalytic H_2O_2 generation rates of BUCN under different	624						
reaction gases or different sacrificial agents.	524						
Figure S21. Percentage Photocatalytic RhB degradation by BUCN catalyst in	S75						
presence of scavenging agents.	525						
Figure S22. Electron spin resonance spectra of (a) DMPO-OH adduct and (b)							
DMPO- $\cdot O_2^-$ adduct in DMSO of PCN and XUCN catalysts.	S26						
Table S1. Elemental analysis of PCN and XUCN catalysts.	S27						
Table S2. Summary of BET surface area and BJH pore radius and pore volume	630						
of the PCN and XUCN catalysts.	528						
Table S3. Summary of the photoluminescence decay time of the PCN and	620						
XUCN catalyst.	829						
Table S4. Summary of the photoluminescence decay time of the PCN and	620						
XUCN catalyst.	330						
References	S32						

35			
36			
37			
38			
39			
40			
41			
42			
43			

44 Section S1. Characterization details

Powder X-ray diffraction (XRD) pattern of the as-prepared catalysts was recorded using Bruker 45 D8 Advance diffractometer operated at voltage = 40 kV and current = 25 mA with 46 monochromatic Cu K α radiation (λ =0.15418 nm). Fourier transform infrared (FT-IR) analysis 47 of was recorded using a Nicolet iS50 FTIR spectrometer (Thermo Fisher Scientific, MA, USA) 48 in the range 4000-400 cm⁻¹. The optical absorption property of the catalysts was analysed by 49 ultraviolet diffuse reflectance spectrophotometer (UV-DRS, UV-2600, Shimadzu, Japan). For 50 the elemental analysis, X-ray photoelectron spectroscopy (XPS), Thermo Scientific Nexa 51 spectrometer, UHV was used. The Brunner Emmette Teller (BET) surface area analysis was 52 done using nova touch surface area analyser NT1-1 (Quantachrome, FL, USA). Magellan 400L 53 FEI High-resolution scanning electron microscope (HR-SEM, Hillsboro, Oregon) was used to 54 analyse the surface topography and obtain elemental mapping. The TEM and HRTEM images 55 were recorded using JEM 2100 transmission electron microscope (TEM) and High-resolution 56 transmission electron microscope (HR-TEM) equipped with a Gatan USC 4000 4x4k camera, 57 at an accelerating voltage of 200 kV. Steady-state photoluminescence (PL) emission spectra 58 were recorded on a spectrofluorometer FL-1039/40 (Horiba Jobin Yvon, NJ, USA) at an 59 excitation wavelength of 320 nm. The time-resolved photoluminescence (TRPL) measurement 60 was done on the Fluorocube-Life Time system JOBINVYON M/S (NJ, USA). The X-band 61 electron paramagnetic resonance (EPR) was recorded on the EPR spectrophotometer Bruker 62 ELEXSYSR500CW (MA, USA). The absorbance of the liquid samples was measured by an 63 ultraviolet-visible (UV-Vis) spectrophotometer (UV-1800, Shimadzu, Japan). 64

65

66

67

70 Figure S1. Fourier transform infrared spectra of PCN and XUCN catalyst.

- 80
- 81

Figure S2. (A) Cross polarized magic angle spinning (CP-MAS) ¹³C nuclear magnetic resonance (NMR) spectra of PCN and BUCN catalyst, (B) optimized structure of 5bromouracil doped PCN catalyst highlighting the different carbon atoms in the structure, and (C) high resolution CP-MAS ¹³C NMR spectra of PCN and BUCN.

Figure S3. (a) UV-vis DRS spectra, and (b) Tauc plot (with mid-gap states energy as the inset)of PCN and XUCN catalyst.

Figure S4. High resolution deconvoluted N1s X-ray photoelectron spectra for PCN and XUCN

- 113 catalyst.

120 Figure S5. SEM image of PCN

129 Figure S6. TEM image of PCN

- ----

140 Figure S7. Energy dispersive X-ray (EDX) mapping for C, N, O, and Cl, and EDX spectrum

141 of CUCN.

147 Figure S8. Energy dispersive X-ray (EDX) mapping for C, N, O, and Br and EDX spectrum148 of BUCN.

- 153 Figure S9. Energy dispersive X-ray (EDX) mapping for C, N, O, and I and EDX spectrum of
- 154 IUCN.

164 Figure S10. Electron spin resonance (ESR) spectra of PCN and XUCN catalysts.

174 Figure S11. Cyclic photocatalytic H_2O_2 generation over BUCN catalyst to check durability for

175 five cycles.

Figure S12. (A) XRD, (B) FTIR, (C) UV-DRS spectra, and (D) KM plot of freshly prepared
BUCN (Fresh) and recycled BUCN (Recycled) catalyst after fifth cycle of H₂O₂ generation.

210 Figure S14. UV-Visible absorption spectra for Cr (VI) reaction mixture on light irradiation

- 211 with time.

229 Figure S15. Photocatalytic activity evaluation of BUCN catalyst for increased Cr (VI)
230 concentration up-to 50 mg L⁻¹.

239 Figure S16. Photocatalytic Cr (VI) reduction performance evaluated by varying BUCN240 catalyst's dosage.

249 Figure S17. Effect of pH on Cr (VI) reduction activity by BUCN catalyst.

-00

Figure S18. Rhodamine B rate constant values for PCN and XUCN catalysts calculated bypseudo first order kinetic fit model.

269 Figure S19. Density of states of calculated for PCN, BU, and BUCN.

278 Figure S20. The photocatalytic H_2O_2 generation rates of BUCN under different reaction gases

279 or different sacrificial agents.

290 Figure S21. Percentage Photocatalytic RhB degradation by BUCN catalyst in presence of291 scavenging agents.

300 Figure S22. Electron spin resonance spectra of (a) DMPO-'OH adduct and (b) DMPO- $\cdot^{O_2^-}$ 301 adduct in DMSO of PCN and XUCN catalysts.

-

			Elements (mol ^o	%)	
	Sample	Carbon (%)	Nitrogen (%)	Hydrogen (%)	- C/N ratio
	PCN	33.35	54.82	1.91	0.61
	CUCN	33.82	54.95	1.86	0.62
	BUCN	32.98	54.07	2.02	0.61
	IUCN	32.57	53.41	2.18	0.61
9					
20					
1					
1					
2					
3					
4					
5					
5					
6					
7					
8					
9					
0					
1					
2					
3					
J					
4					

Table S1. Elemental analysis of PCN and XUCN catalysts.

336	Table S2, Summary	v of BET surface are:	a and BIH pore	e radius and p	ore volume of	f the PCN
550		y of DET buildee area	a and Dorr por	e indias and p		

337 and XUCN catalysts.

Sample	S _{BET} (m ² g ⁻¹)	D _r (nm)	D _V (cm ³ g ⁻¹)
PCN	10.6	1.23	0.0133
CUCN	83.3	1.63	0.1547
BUCN	37.8	1.64	0.0839
IUCN	28.6	1.62	0.0609

- S_{BET} : Specific surface area
- 339 D_r: Pore radius
- D_v : Pore volume

	Samnla	Lifetime / ns Intensity			Avorago Lifatima / na			
	Sample	τ_1	τ_2	$ au_3$	A ₁	A_2	A ₃	Average Litetime / iis
	PCN	3.46	0.83	15.32	2816.37	13060.70	243.63	1.5
	CUCN	0.63	2.94	11.02	8954.94	3329.61	486.21	1.6
	BUCN	1.01	3.89	16.75	10109.50	2792.01	268.58	1.9
	IUCN	1.20	4.21	16.41	7336.87	4163.04	681.16	3.1
354								
355								
356								
357								
358								
359								
360								
361								
362								
363								
364								
365								
366								
367								
368								
369								
370								
371								

353 Table S3. Summary of the photoluminescence decay time of the PCN and XUCN catalyst.

Sr.	Catalyst	Yield	Light	Sacrificial	Catalyst	Ref.
No.		(µmol h ⁻¹)	source	agent	dose	
1	PI assembled	60	300 W	-	50 mg in	1
	nanosheeted g-		Xe		50 mL	
	C ₃ N ₄ (PI _x -NCN		lamp			
			300 W		20 mg in	
2	CoP-decorated g-C ₃ N ₄	70	Xe	Ethanol	20 mJ	2
			lamp		20 IIIL	
2	Biphenyl diimide	9.6	$\lambda > 420$		50 mg in	3
5	(BDI) doped g-C ₃ N ₄	9.0	nm	-	30 mL	
			300 W			
	CN _{QDs} @MA-Ag nanocomposites		Xenon			
			lamp			
4		39.82	with a	IPA	1mg/ml	4
			420 nm			
			cutoff			
			filter			
5	P doned a C-N-	90		ΙΡΑ	0.5	5
	1 doped g-C314)0		пл	mg/mL	
	Red phosphorous		500 W		100 mg	
6	decorated g-C ₂ N ₄	125	Xe	None	in 100	6
	RP/GCN	125	lamn	Tione	mL	
			lump		water	
					400 mg	
	Au NPs supported		300 W		in 100	
7	graphitic carbon	100	Xe	Fthanol	mL	7
	nitride (Au/ σ -C ₂ N ₄)	100	lamn	Lindioi	alcohol/	
	munue (1947g-03194)				water	
					mixture	
8	polyoxometalates-	9.7	300 W	-	100 mg	8

Table S4. Comparison of H_2O_2 yield by reported catalysts and present work.

	derived metal oxides		Xe		in 100	
	incorporated into		lamp		mL	
	graphitic carbon				water	
	nitride					
	(g-C ₃ N ₄ -CoWO)					
9	Ti ₃ C ₂ nanosheets and porous g-C ₃ N ₄	2.2	300 W Xe lamp	IPA	50 mg in 50 mL	9
10	Boron nitride quantum dots decorated ultrathin porous g- C ₃ N ₄ (BNQDs/UPCN)	72.3	50 mg 50 mL	IPA	50 mg in 50 mL	10
11	B-C ₃ N ₄ @Bi ₂ S ₃	42.05	300 W Xenon lamp	None	50 mg in 50 mL	11
12	polydopamine (PDA) surface-modified g- C ₃ N ₄ composites (CNPX)	23	300 W Xenon lamp	None	30 mg in 30 mL	12
13	5-Bromo uracil doped carbon nitride (BUCN)	126.55	50 W LED lamp	IPA	50 mg in 50 mL	This work

382

383 **References**

- L. Yang, G. Dong, D. L. Jacobs, Y. Wang, L. Zang and C. Wang, *Journal of Catalysis*, 2017, **352**, 274-281.
- Y. Peng, L. Wang, Y. Liu, H. Chen, J. Lei and J. Zhang, *European Journal of Inorganic Chemistry*, 2017, 2017, 4797-4802.
- Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa and T. Hirai,
 ACS Catalysis, 2016, 6, 7021-7029.
- M. Yin, X. Chen, Y. Wan, W. Zhang, L. Feng, L. Zhang and H. Wang, *ChemCatChem*, 2020, **12**, 1512-1518.
- 392 5. X. Dang, R. Yang, Z. Wang, S. Wu and H. Zhao, *Journal of Materials Chemistry A*, 2020, 8, 22720-22727.
- J. Zhang, J. Lang, Y. Wei, Q. Zheng, L. Liu, Y.-H. Hu, B. Zhou, C. Yuan and M. Long,
 Applied Catalysis B: Environmental, 2021, **298**, 120522.
- G. Zuo, S. Liu, L. Wang, H. Song, P. Zong, W. Hou, B. Li, Z. Guo, X. Meng, Y. Du, T.
 Wang and V. A. L. Roy, *Catalysis Communications*, 2019, **123**, 69-72.
- 398 8. S. Zhao and X. Zhao, *Applied Catalysis B: Environmental*, 2019, **250**, 408-418.
- 399 9. Y. Yang, Z. Zeng, G. Zeng, D. Huang, R. Xiao, C. Zhang, C. Zhou, W. Xiong, W.
- Wang, M. Cheng, W. Xue, H. Guo, X. Tang and D. He, *Applied Catalysis B: Environmental*, 2019, 258, 117956.
- 402 10. Y. Yang, C. Zhang, D. Huang, G. Zeng, J. Huang, C. Lai, C. Zhou, W. Wang, H. Guo,
 403 W. Xue, R. Deng, M. Cheng and W. Xiong, *Applied Catalysis B: Environmental*, 2019,
 404 245, 87-99.
- 405 11. S. M. Ghoreishian, K. S. Ranjith, M. Ghasemi, B. Park, S.-K. Hwang, N. Irannejad, M. Norouzi, S. Y. Park, R. Behjatmanesh-Ardakani, S. M. Pourmortazavi, S. Mirsadeghi,
- 407 Y.-K. Han and Y. S. Huh, *Chemical Engineering Journal*, 2023, **452**, 139435.
- Z. Gong, L. Chen, K. Chen, S. Gou, X. Zhao, L. Song, J. Ma and L. Han, *Journal of Environmental Chemical Engineering*, 2023, 11, 109405.