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Characterization

X-ray diffraction （XRD） was applied on a Bruker X-ray diffraction with Cu 

Kα radiation (λ= 1.54178 Å) to determine the crystal phase of the synthesized 

products. The surface microstructure and composition of electrode materials were 

analyzed by field-emission scanning (FE-SEM) (JEOL7610, Japan). The surface 

chemical composition and structure were investigated by an X-ray photoelectron 

spectroscope （XPS）equipped with a monochromatic Al Kα X-ray source 

operating at 100 W. Aberration-corrected scanning transmission electron microscopy 
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images were obtained on a JEM 2100 F/FEI probe-corrected transmission electron 

microscope (TEM). All DFT calculations are performed using the density functional 

theory method in the VASP package.

Electrochemical measurements

All electrochemical measurements, including constant current charge/discharge 

(GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), 

is completed on the electrochemical workstation (CH Instrument 760E). Electrode 

material characterizations were evaluated by a three-electrode system. The synthetic 

material was used as a working electrode, while platinum and Ag/AgCl tablets were 

used as the counter and reference electrodes, and a 3 M KOH aqueous solution was 

used for electrolysis. 1T-2H MS@BNC/CC//AC/CC was evaluated by a two-

electrode system. Hydrogel is prepared by PVA and KOH as a gel electrolyte.

All specific capacitance is calculated based on eq S1.

                         (1)                                                             𝐶 = 𝑗 △ 𝑡 𝑚 △ 𝑉

Where C (F g-1) is the specific capacitance, Δt (s) is the discharge time, j is the 

current density, m (g) is the effective mass, and ΔV (V) is the potential window.

The measurement of current i mainly consists of two parts: diffusion control (idiff) 

and capacitance control (icap), which can be represented by eq S2 and S3.

                          (2)  𝑖 = 𝑖𝑑𝑖𝑓𝑓 + 𝑖𝑐𝑎𝑝

                             (3)𝑖 = 𝑎 𝑉𝑏

Among them, v is the scanning rate, and a and b are the fitting parameters 

obtained by logi regarding logv. The control process can be analyzed through the b 
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value. When the b value approaches 0.5, the dynamic mechanism of the electrode is 

diffusion control, and when the b value approaches 1, it is surface capacitance control.

The quantification of the capacitance contribution rate is calculated according to 

eq S4.

                     (4)                                                                𝑖(𝑉) = 𝑘1𝑣 + 𝑘2𝑣1 2

Where i is the response current at the potential of V, k1 v and k2 v1/2 represent the 

contributions of surface control processes and diffusion control processes, 

respectively

The energy density and power density Were calculated using eq S5 and S6, 

respectively.

                                                                                  𝐸 = 𝐶 ∗ △ 𝑉2 （2 ∗ 3.6）

(5)

                       (6)                                                                  𝑃 = 3600 𝐸 △ 𝑡  

Where the energy density and power density are E (Wh kg-1) and P (W kg-1), 

respectively, C (F g-1) is the specific capacitance, ΔV (V) is the potential window, and 

Δt (s) is the discharge time.

Figure S1. XRD spectra of MS/CC
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Figure S2. (a) XRD spectra of BNC/CC, and CC. (b)XPS analysis of the C 1s region of BNC/CC 

and CC. (c) XPS analysis of the O 1s region of as-synthesized BNC/CC and CC.

Figure S3. (a) Comparison of XPS spectra between 2H MS@BNC/CC and 1T-2H MS@BNC/CC. 

(b)XPS analysis of the N 1s region of as-synthesized 2H MS@BNC/CC samples. (c) XPS analysis 

of the N 1s region of as-synthesized 1T-2H MS@BNC/CC samples. 

Figure S4. (a, b) SEM images of CC. (c, d) SEM images of BNC/CC.
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Figure S5. (a) SEM images of MS/CC. (d) SEM images of 2H MS@BNC/CC.

Figure S6. (a) SAED pattern of 2H MS@BNC/CC. (b) SAED pattern of 1T-2H MS@BNC/CC

Table S1. Comparison of electrochemical performance between 1T-2H MS@BNC/CC and 

reported MoS2 based supercapacitors

Electrode materials Electrolyte Specific capacitance (F g-1) Reference

1T-2H MS@BNC/CC 3 M KOH 994.28 at 0.5 A g-1 This work

MoS2/C 1 M KOH 589 at 0.5 A g-1 1

MoS2/PANI 1 M H2SO4 521.7 at 1 A g-1 3

MoS2 Nanoflower 3 M KOH 368 at 1 A g-1 4

PANI/MoS2- MnO2 1 M KOH 469 at 1 A g-1 5

MoS2/PANI-53 1 M H2SO4 476 at 0.5 A g-1 6

MoS2/PPy 1 M KOH 654 at 1 A g-1 7

MoS2-Gr 1 M Na2SO4 243 at 1 A g-1 8

MoS2/rGO/PANI 1 M H2SO4 570 at 1 A g-1 9

MoS2 nanoworms 1 M Na2SO4 138 at 1 A g-1 10
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Figure S7. Coulombic efficiency during 6000 cycles for the 1T-2H MS@BNC/CC electrode at
40 A g-1.

Figure S8. (a) CV curves of 1T-2H MS@BNC/CC at 10-50 mV s-1. (b) The b values for the 1T-

2H MS@BNC/CC; the inset shows the current response vs. the scan rate for 1T-2H 

MS@BNC/CC at different voltages.

Figure S9. CV partition analysis showing the capacitive contribution to the total current at selected 
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scan rates. (a) 10 mV s-1. (b) 20 mV s-1. (c) 30 mV s-1. (d) 40 mV s-1. (e) 50 mV s-1. 

Figure S10. (a) LDOS distribution of C, N, and B in 2H MS@BNC/CC. (b) LDOS distribution of 

C, N, and B in 1T-2H MS@BNC/CC. (c) LDOS distribution of Mo and S in 2H MS@BNC/CC. 

(d) LDOS distribution of Mo and S in 1T-2H MS@BNC/CC.

Table S2. Comparison of electrochemical performance between 1T-2H MS@BNC/CC and 

reported MoS2 based supercapacitors

Electrode materials Electrolyte
Energy density

(Wh·kg−1)
Power density

(W·kg−1)
Reference

1T-2H MS@BNC/CC KOH 92.285 349.7 This work

MoS2/NiS KOH 31 155.7 2

PANI/MoS2-MnO2 KOH 35.97 500 5

MoS2/PANI-53 H2SO4 35 335 6

MoS2/PPy KOH 66 488 7

Co9S8/α-MnS@N-C@MoS2 KOH 64.2 729.2 11

PAN/MoO2/MoS2 KOH 46 2246.9 12

MoS2@3DGN KOH 36.43 400 13

NMS/CNT KOH 40 400 14
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