Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary information

The Mott–Schottky Co₂P/Co heterocatalyst encapsulated N,P-doped graphene/carbon nanotubes as high-efficiency trifunctional electrocatalysts for cable-type flexible Zn–air batteries and water splitting

Quynh Phuong Ngo, Thanh Tuan Nguyen, Manjinder Singh, Nam Hoon Kim, Joong Hee Lee**

E-mail: nhk@jbnu.ac.kr, jhl@jbnu.ac.kr

Fig. S1. (a) Overview FE-SEM and EDS color mapping of (b) Co, (c) P, (d) C, (e) N, (f) O elements and spectrum focus to N–CNT of $Co_2P/Co@N$ –CNT/NPG nanohybrid.

Fig. S2. (a,b) FE-SEM images, (c) TEM image, (d) Corresponding color mapping images of C, P, N, O elements, and (e) EDS of NPG.

Fig. S3. TEM images of (a,d) Co@N-CNT/NG, (b,e) Co₂P/Co@N-CNT/NPG, and (c,f) Co₂P/Co@PG.

Fig. S4. The ICP–AES result of $Co_2P/Co@N-CNT/NPG$, Co@N-CNT/NG, and $Co_2P/Co@PG$.

Fig. S5. Raman spectrum of Co₂P/Co@N–CNT/NPG, NPG, and GO.

Fig. S6. Pore size distribution diagram of Co₂P/Co@N–CNT/NPG, Co@N–CNT/NG, Co₂P/Co@PG and NPG.

Fig. S7. XAS characterization. a) Co K-edge XANES curves and b) Fourier-transformed EXAFS spectra at the Co K-edge of $Co_2P/Co@N-CNT/NPG$, Co_3O_4 , and Co foil reference.

Fig. S8. The CV profiles of the synthesized materials at sweep rate of 5 mV s⁻¹ in N_2 -saturated 0.1 M KOH solution.

Fig. S9. LSV responses at various electrode rotation speeds and corresponding K-L plots in 0.1 M KOH aqueous solution with RDE: (a,b) Co@N–CNT/NG, (c,d) Co₂P/Co@PG, (e,f) NPG, and (g,h) Pt/C.

Fig. S10. ORR LSV polarization curves of Co₂P/Co@N–CNT/NPG before and after 10,000 cycles.

Fig. S11. (a) SEM and (b, c) TEM images at different magnification, (d) XRD patterns, (e) Raman spectra and XPS survey spectrum with high-resolution XPS spectra for (f) Co 2p, (g) P 2p, (h) N 1s, (i) C 1s of Co₂P/Co@N–CNT/NPG after ORR performance.

Fig. S12. The durability of $Co_2P/Co@N-CNT/NPG$ and Pt/C under the crossover effect of 3 M methanol.

Fig. S13. The OER and HER overpotential comparison of Co₂P/Co@N–CNT/NPG, Co@N–CNT/NG, Co₂P/Co@PG, NPG, RuO₂ and Pt/C in 1 M KOH.

Fig. S14. OER LSV polarization curves of Co₂P/Co@N–CNT/NPG before and after 10,000 cycles.

Fig. S15. Chronoamperometry stability of Co₂P/Co@N–CNT/NPG and RuO₂ for a long-term OER operation.

Fig. S16. (a) SEM and (b, c) TEM images at different magnification, (d) XRD patterns, (e) Raman spectra and XPS survey spectrum with high-resolution XPS spectra for (f) Co 2p, (g) P 2p, (h) N 1s, (i) C 1s of $Co_2P/Co@N-CNT/NPG$ after OER performance.

Fig. S17. OER LSV polarization curves of Co₂P/Co@N–CNT/NPG, Co@N–CNT/NG, Co₂P/Co@PG, NPG and RuO₂ in 3 M KOH at 80 °C.

Fig. S18. HER LSV polarization curves of Co₂P/Co@N–CNT/NPG, Co@N–CNT/NG, Co₂P/Co@PG, NPG and RuO₂ in 3 M KOH at 80 °C.

Fig. S19. HER LSV polarization curves of Co₂P/Co@N–CNT/NPG before and after 10,000 cycles.

Fig. S20. (a) SEM and (b, c) TEM images at different magnification, (d) XRD patterns, (e) Raman spectra and XPS survey spectrum with high-resolution XPS spectra for (f) Co 2p, (g) P 2p, (h) N 1s, (i) C 1s of Co₂P/Co@N–CNT/NPG after HER performance.

Fig. S21. CV curves of catalysts at various scan rates in 1 M KOH aqueous solution: (a) Co₂P/Co@N–CNT/NPG, (b) Co@N–CNT/NG, (c) Co₂P/Co@PG, (d) NPG, and (e) RuO₂.

Fig. S22. CV measurement of different synthesized catalysts at a sweep rate of 10 mV s^{-1} .

Fig. S23. ECSA-normalized LSV curves of as-prepared electrocatalysts for a) OER and b) HER.

Fig. S24. TOF of as-prepared electrocatalysts for a) HER and b) OER.

Fig. S25. The electronic band structure of Co₂P/Co@PG, Co@NG, and Co₂P/Co@NPG.

Fig. S26. Energy density difference calculation for Co₂P/Co model.

Fig. S27. (a-c) The calculation results for work function for Co_2P , Co and Co_2P /Co, (d) Mott– Schottky model for the interaction between Co sites and Co_2P sites in Co_2P/Co .

Fig. S28. Rate discharge curves the voltage with various current density of the rechargeable ZAB based on the $Co_2P/Co@N-CNT/NPG$ and $Pt/C+RuO_2$ cathodes.

Fig. S29. Cycle stability of ZAB at a high current density of 20 mA cm⁻².

Samples	Co (wt.%)	P (wt.%)	N (wt.%)	O (wt.%)	C (wt.%)
Pure NPG	-	1.32	6.84	5.46	86.38
Co@N-CNT/NG	9.56	-	5.58	4.61	80.08
Co ₂ P/Co@PG	12.46	4.01	-	5.71	77.42
Co ₂ P/Co@N– CNT/NPG	10.24	3.75	6.45	8.70	70.85

 Table S1. Elemental composition of as-synthesized catalysts estimated.

Co, P, N, O, and C contents were detected by XPS analysis.

ORR catalysts	Catalyst loading (mg cm ⁻²)	Onset potential (V vs. RHE)	E _{1/2} (V vs. RHE)	n	References
Co ₂ P/Co@N– CNT/NPG	0.2	1.05	0.91	3.95	This work
20% Pt/C		1.02	0.89	3.97	
Co _x P@N,P-C	0.28	-	0.82	3.95	1
Fe _x P/NPCS	0.16	0.918	0.832	3.98	2
MnVO _x @N-rGO	0.3	1.14	0.80	~3.9	3
НСА-Со	-	0.92	0.87	-	4
W ₂ N/WC	0.6	0.93	0.827	-	5
SHG	0.5	1.01	0.87	3.81-3.96	6
NH ₄ Co _x Fe _{1-x} PO ₄	0.35	0.83	0.74	3.64-4.01	7
P single bond HPC	0.4	0.88	0.79	3.5–3.9	8
CoP-PBSCF	0.25	-	0.752	~4	9
Mo ₂ C@NC	0.28	0.9	0.78	-	10
2D-PPCN	-	0.92	0.85	~3.6	11
Fe–N/C	0.1	0.923	0.809	~3.96	12
N,S-CD/rGO	0.35	-	0.69	3.90	13
Co-NTMCs@NSC	0.2	0.945	0.833	3.91	14

Table S2 Compare ORR performance with the most recently reported non-noble metal ORRcatalysts in 0.1 M KOH.

 Table S3 Compare OER performance with the most recently reported non-noble metal OER

 catalysts in 1 M KOH.

OER catalysts	Catalyst loading (mg cm ⁻²)	Overpotential (mV)	Tafel (mV dec ⁻¹)	References
Co ₂ P/Co@N–CNT/NPG	0.2	309	60.5	This work
RuO ₂	0.2	341	74.2	This work
Co _x P@N,P-C	0.28	320	87	1
W ₂ N/WC	0.6	320	94.5	5
SHG	0.5	330	71	6
NH ₄ Co _x Fe _{1-x} PO ₄	0.35	313	58.92	7
FeP nanorods	-	350	63.6	15
VN-Co-P	-	335	-	16
CP/CTs/Co-S	-	308	72	17
CoP/GO	0.28	340	66	18
FeCoNi@Gr	0.32	325	60	19
Ni ₃ S ₂ /NF	-	312	111	20
Co@NPC-H	0.2	350	57	21
Na _{1.95} CoP ₂ O ₇	0.28	360	51	22
Co ₉ S ₈ @MoS ₂	0.4	342	94	23
PNPC	0.28	313	83.7	24

Table S4 Compare catalytic activities of the reported non-noble bifunctional catalysts for	
both OER and ORR.	

Both OER and ORR Catalysts	Electrolyte (M KOH)	E _{1/2} (V vs. RHE)	E _{j=10} (V vs. RHE)	ΔE (V vs. RHE)	References
Co ₂ P/Co@N– CNT/NPG	0.1	0.91	1.74	0.82	
20% Pt/C	0.1	0.89	1.91	1.02	This work
RuO ₂		0.75	1.88	1.13	
MnVO _x @N-rGO	0.1	0.80	1.65	0.85	3
Co@NPC-H	0.1	0.72	1.58	0.86	21
Na _{1.95} CoP ₂ O ₇	0.1	0.73	1.59	0.86	22
SL Ni(OH) ₂	0.1	0.64	1.57	0.93	25
SWCNT@NPC	1	0.85	1.678	0.83	26
CoV _{2-x} Fe _x O ₄	1	0.664	~1.53	0.83	27
Fe ₂ P/EWC	0.1	0.83	1.53	0.87	28
CoFe/N-GCT	0.1	0.79	1.67	0.88	29
NiO/NiCo ₂ O ₄	0.1	0.73	-	0.86	30
Fe ₂ Ni ₂ N/Co	0.1	0.76	1.63	0.87	31
Fe/Fe ₃ C@C	1	0.84	1.68	0.84	32
Fe@N–C	0.1	0.83	1.71	0.88	33
CoNC-CNF	0.1	0.8	1.68	0.88	34
Ni ₃ Fe/N-C	0.1	0.78	1.62	0.84	35

Table S5 Compare HER performance with the most recently reported non-noble metal HER
 catalysts in 1 M KOH.

HER catalysts	Catalyst loading (mg cm ⁻²)	Overpotential (mV)	Tafel (mV dec ⁻¹)	References
Co ₂ P/Co@N–CNT/NPG	0.2	98	104.6	This work
Pt/C	0.2	37	61.4	This work
W ₂ N/WC	0.6	148.5	47.4	5
SHG	0.5	230	112	6
VN-Co-P		137	81	16
CP/CTs/Co-S	-	190	131	17
CoP/GO	0.28	150	38	18
FeCoNi@Gr	0.32	211	77	19
Ni ₃ S ₂ /NF	-	131	96	20
$Co_9S_8@MoS_2$	0.4	143	117	23
Co/NBC	-	117	146	36
NiS/Ni ₂ P/CC	-	111	78.1	37
NiCo ₂ S ₄ NA/CC	4	230	141	38
CoCO ₃ @NiFe LDH	-	171	168.2	39
NiSP/NF	-	93	107	40
N-NiS/NiS ₂	-	185	106	41

Air cathode	OCP (V)	Power densit y (mW cm ⁻²)	Specific capacity (mAh $g_{2n}^{-1}@mA$ cm ⁻²)	Energy density (W h g ⁻¹ @mA cm ⁻²)	Durability (cycles/h @ mA cm ⁻²)	References
Co ₂ P/Co@N– CNT/NPG	1.458	145	781@10	987.2@10	1200/800@10 375/275@20	
					925/290 10	This work
Pt/C+RuO ₂	1.411	98	608@10	728.9@10	825/280@10	
					225/75@20	
NH ₄ Co _x Fe _{1-x} PO ₄	1.36	74.6	750@10	-	-/30@10	7
NiO/NiCo ₂ O ₄	1.47	99.0	814.4@10	911@10	-/175@10	30
Fe/Fe ₃ C@C	1.37	101.3	682.6@10	764.5@10	297/99@10	32
Fe@N–C	~1.40	220	-	-	100/-@10	33
Ni ₃ Fe/N-C	-	-	528@10	~634@10	420/105@10	35
CoFeN-	1 455	145	779 4@10		1255/445@10	42
NCNTs//CCM	1.455	145	//8.4@10	-	1555/445(@10	
N-GCNT/FeCo	1.48	89.3	872.2@100	653@100	240/40@10	3
Co ₄ N@NC	1.49	98.6	644.3@10	736.2@10	200/-@10	44
CoS _x /NCNTs/Ni	1.45	131	-	-	200/200@5	45
Co ₂ SiO ₄ /N-C	1.412	138.2	-	-	600/400@5	46
CoVN-NC	1.44	237.8	-	-	-	47
Fe _{0.5} Co _{0.5} O _x /NrGO	1.43	86	709@25	806@25	120/120@25	48

Table S6 The comparative performance of the liquid ZAB with recently reported non-noble

 metal air cathode-based liquid ZAB devices in alkaline electrolytes.

Air cathode	OCV (V)	Durability (cycles/h@mA cm ⁻²)	References
Co ₂ P/Co@N–CNT/NPG	1.415	615/205@5	This work
Pt/C+RuO ₂	1.392	210/70@5	THIS WORK
НСА-Со	1.4	50/33.3@1	4
QAFCGO	~1.4	30/10@1	49
Fe-Co ₄ N@N-C	1.34	45/-@4	50
Co ₄ N/CNW/CC	1.4	408/136@10	51
NC-Co SA	1.41	125/42@10	52
CoFe/N-GCT	1.48	1600/270@2	53
LaNiO ₃ /NCNT	1.3	120/25@-	54
NiCo ₂ O ₄ @MnO ₂ -CNTs	1.36	540/9@3	55
DN-CP@G	1.34	170/170@1	56
P–O/FeN ₄ –CNS	1.41	-/20@25	57
CC@VG	1.38	108/36@2	58
Fe,N-CNS	1.38	60/10@5	59
Fe-N _x -C	1.49	-/120@1	60
CoNCNTF/CNF	1.34	68/11@0.5	61

Table S7 The comparative performance of the solid-state flexible ZAB with recently reported

 non-noble metal air cathode-based solid-state flexible ZAB devices.

Catalysts	Overpotential at 10 mV cm ⁻² (V)	References
Co ₂ P/Co@N–CNT/NPG	1.66	This work
Pt/C+RuO ₂	1.54	THIS WOLK
SHG	1.68	6
CP/CTs/Co-S	1.74	17
CoP/GO	1.7	18
FeCoNi@Gr	1.687	19
Ni ₃ S ₂ /NF	1.68	20
Co/NBC	1.68	36
NiS/Ni ₂ P/CC	1.67	37
NiCo ₂ S ₄ NA/CC	1.68	38
CoCO ₃ @NiFe LDH	1.67	39
NiSP/NF	1.7	40
N-NiS/NiS ₂	1.74	41
NiCoP–NiCoSe ₂	1.7	62
Co ₉ S ₈ /CC	1.74	63
NiSe ₂	1.7	64

Table S8 The comparative performance of the overall water splitting with recently reported

 non-noble metal electrode-based water splitting devices in 1 M KOH.

References

- Q. Shi, Q. Liu, Y. Zheng, Y. Dong, L. Wang, H. Liu, W. Yang, *Energy Environ. Mater.* 2022, 5, 515.
- K. Hu, Z. Xiao, Y. Cheng, D. Yan, R. Chen, J. Huo, S. Wang, *Electrochim. Acta* 2017, 254, 280.
- X. Xing, R. Liu, K. Cao, U. Kaiser, G. Zhang, C. Streb, ACS Appl. Mater. Interfaces 2018, 10, 44511.
- 4. C. Zhu, Y. Ma, W. Zang, C. Guan, X. Liu, S. J. Pennycook, J. Wang, W. Huang, J. Chem. Eng. 2019, 369, 988.
- J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen, H. Li, W. Yuan, Y. Qu, X. Guo, *Adv. Mater.* 2020, 32, 1905679.
- 6. C. Hu, L. Dai, *Adv. Mater.* **2017**, 29, 1604942.
- D.-S. Pan, P. Chen, L.-L. Zhou, J.-H. Liu, Z.-H. Guo, J.-L. Song, *J. Power Sources* 2021, 498, 229859.
- 8. J. Wu, R. Yang, W. Yan, Int. J. Hydrog. Energy 2019, 44, 12941.
- Y.-Q. Zhang, H.-B. Tao, Z. Chen, M. Li, Y.-F. Sun, B. Hua, J.-L. Luo, J. Mater. Chem. A 2019, 7, 26607.
- Z. Cheng, Q. Fu, Q. Han, Y. Xiao, Y. Liang, Y. Zhao, L. Qu, *Adv. Funct. Mater.* 2018, 28, 1705967.
- W. Lei, Y.-P. Deng, G. Li, Z. P. Cano, X. Wang, D. Luo, Y. Liu, D. Wang, Z. Chen, ACS Catal. 2018, 8, 2464.
- 12. L. Lin, Q. Zhu, A.-W. Xu, J. Am. Chem. Soc. 2014, 136, 11027.
- 13. P. Zhang, J.-S. Wei, X.-B. Chen, H.-M. Xiong, J. Colloid Interface Sci. 2019, 537, 716.
- 14. X. Zhu, J. Dai, L. Li, Z. Wu, S. Chen, *Nanoscale* **2019**, 11, 21302.
- 15. D. Xiong, X. Wang, W. Li, L. Liu, Chem. Commun. 2016, 52, 8711.
- H. Yang, Y. Hu, D. Huang, T. Xiong, M. Li, M. S. Balogun, Y. Tong, *Mater. Today* 2019, 11, 1.
- 17. J. Wang, H.-x. Zhong, Z.-l. Wang, F.-l. Meng, X.-b. Zhang, ACS Nano 2016, 10, 2342.
- 18. L. Jiao, Y.-X. Zhou, H.-L. Jiang, Chemical Science 2016, 7, 1690.
- Y. Yang, Z. Lin, S. Gao, J. Su, Z. Lun, G. Xia, J. Chen, R. Zhang, Q. Chen, ACS Catal.
 2017, 7, 469.
- 20. G. Ren, Q. Hao, J. Mao, L. Liang, H. Liu, C. Liu, J. Zhang, *Nanoscale* **2018**, 10, 17347.

- Y.-N. Hou, Z. Zhao, H. Zhang, C. Zhao, X. Liu, Y. Tang, Z. Gao, X. Wang, J. Qiu, Carbon 2019, 144, 492.
- L. Gui, X. Miao, C. Lei, K. Wang, W. Zhou, B. He, Q. Wang, L. Zhao, *Eur. J. Chem.* 2019, 25, 11007.
- 23. Y. J. Feng, T. He, N. A. Vante, Chem. Mater. 2008, 20, 26.
- 24. Z. Xu, Q. Zhang, M. Li, F. Luo, Y. Liu, R. Wang, X. Ma, Z. Yang, D. Zhang, *ChemCatChem* **2020**, 12, 5534.
- 25. H. B. Gray, Nat. Chem. 2009, 1, 7.
- 26. J.-C. Li, P.-X. Hou, M. Cheng, C. Liu, H.-M. Cheng, M. Shao, *Carbon* 2018, 139, 156.
- K. Chakrapani, G. Bendt, H. Hajiyani, T. Lunkenbein, M. T. Greiner, L. Masliuk, S. Salamon, J. Landers, R. Schlögl, H. Wende, R. Pentcheva, S. Schulz, M. Behrens, ACS Catal. 2018, 8, 1259.
- K. Sun, J. Li, L. Huang, S. Ji, P. Kannan, D. Li, L. Liu, S. Liao, *J. Power Sources* 2019, 412, 433.
- X. Liu, L. Wang, P. Yu, C. Tian, F. Sun, J. Ma, W. Li, H. Fu, *Angew. Chem. Int. Ed.* 2018, 57, 16166.
- Z. Zhang, X. Liang, J. Li, J. Qian, Y. Liu, S. Yang, Y. Wang, D. Gao, D. Xue, ACS Appl. Mater. Interfaces 2020, 12, 21661.
- 31. M. Wu, G. Zhang, J. Qiao, N. Chen, W. Chen, S. Sun, *Nano Energy* **2019**, 61, 86.
- Q. Wang, Y. Lei, Z. Chen, N. Wu, Y. Wang, B. Wang, Y. Wang, J. Mater. Chem. A 2018, 6, 516.
- 33. J. Wang, H. Wu, D. Gao, S. Miao, G. Wang, X. Bao, *Nano Energy* **2015**, 13, 387.
- 34. W. Zhang, X. Yao, S. Zhou, X. Li, L. Li, Z. Yu, L. Gu, *Small* **2018**, 14, 1800423.
- G. Fu, Z. Cui, Y. Chen, Y. Li, Y. Tang, J. B. Goodenough, *Adv. Energy Mater.* 2017, 7, 1601172.
- M.-R. Liu, Q.-L. Hong, Q.-H. Li, Y. Du, H.-X. Zhang, S. Chen, T. Zhou, J. Zhang, *Adv. Funct. Mater.* 2018, 28, 1801136.
- X. Xiao, D. Huang, Y. Fu, M. Wen, X. Jiang, X. Lv, M. Li, L. Gao, S. Liu, M. Wang, C. Zhao, Y. Shen, ACS Appl. Mater. Interfaces 2018, 10, 4689.
- 38. D. Liu, Q. Lu, Y. Luo, X. Sun, A. M. Asiri, *Nanoscale* 2015, 7, 15122.
- 39. R. Que, S. Liu, P. He, Y. Yang, Y. Pan, *Materials Letters* 2020, 277, 128285.
- 40. R. A. Marquez-Montes, K. Kawashima, Y. J. Son, J. A. Weeks, H. H. Sun, H. Celio, V. H. Ramos-Sánchez, C. B. Mullins, *J. Mater. Chem. A* 2021, 9, 7736.

- 41. H. Liu, Z. Liu, F. Wang, L. Feng, J. Chem. Eng. 2020, 397, 125507.
- 42. G. Zhou, G. Liu, X. Liu, Q. Yu, H. Mao, Z. Xiao, L. Wang, *Adv. Funct. Mater.* **2022**, 32, 2107608.
- 43. C. Y. Su, H. Cheng, W. Li, Z. Q. Liu, N. Li, Z. Hou, F. Q. Bai, H. X. Zhang, T. Y. Ma, *Adv. Energy Mater.* **2017**, 7, 1602420.
- 44. L. Chen, Y. Zhang, X. Liu, L. Long, S. Wang, X. Xu, M. Liu, W. Yang, J. Jia, *Carbon* 2019, 151, 10.
- 45. L.-N. Lu, Y.-L. Luo, H.-J. Liu, Y.-X. Chen, K. Xiao, Z.-Q. Liu, *J. Chem. Eng.* **2022**, 427, 132041.
- 46. X. Guo, S. Zheng, Y. Luo, H. Pang, J. Chem. Eng. 2020, 401, 126005.
- 47. Z. Li, X. Wang, J. Liu, C. Gao, L. Jiang, Y. Lin, A. Meng, ACS Sustain. Chem. Eng.
 2020, 8, 3291.
- L. Wei, H. E. Karahan, S. Zhai, H. Liu, X. Chen, Z. Zhou, Y. Lei, Z. Liu, Y. Chen, *Adv. Mater.* 2017, 29, 1701410.
- 49. J. Zhang, J. Fu, X. Song, G. Jiang, H. Zarrin, P. Xu, K. Li, A. Yu, Z. Chen, *Adv. Energy Mater.* **2016**, 6, 1600476.
- 50. Q. Xu, H. Jiang, Y. Li, D. Liang, Y. Hu, C. Li, *Appl. Catal. B: Environ.* 2019, 256, 117893.
- 51. F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, J. Am. Chem. Soc. 2016, 138, 10226.
- W. Zang, A. Sumboja, Y. Ma, H. Zhang, Y. Wu, S. Wu, H. Wu, Z. Liu, C. Guan, J. Wang, S. J. Pennycook, ACS Catal. 2018, 8, 8961.
- X. Liu, L. Wang, P. Yu, C. Tian, F. Sun, J. Ma, W. Li, H. Fu, *Angew. Chem. Int. Ed.* 2018, 57, 16166.
- J. Fu, D. U. Lee, F. M. Hassan, L. Yang, Z. Bai, M. G. Park, Z. Chen, *Adv. Mater.* 2015, 27, 5617.
- N. Xu, Y. Cai, L. Peng, J. Qiao, Y.-D. Wang, W. M. Chirdon, X.-D. Zhou, *Nanoscale* 2018, 10, 13626.
- 56. C. Hang, J. Zhang, J. Zhu, W. Li, Z. Kou, Y. Huang, *Adv. Energy Mater.* **2018**, 8, 1703539.
- H. Sun, S. Liu, M. Wang, T. Qian, J. Xiong, C. Yan, ACS Appl. Mater. Interfaces 2019, 11, 33054.
- B. Zhang, E. Zhang, S. Wang, Y. Zhang, Z. Ma, Y. Qiu, J. Colloid Interface Sci. 2019, 543, 84.

- 59. M. Wang, S. Liu, N. Xu, T. Qian, C. Yan, Adv. Sustain. Syst. 2017, 1, 1700085.
- 60. J. Han, X. Meng, L. Lu, J. Bian, Z. Li, C. Sun, Adv. Funct. Mater. 2019, 29, 1808872.
- 61. D. Ji, L. Fan, L. Li, N. Mao, X. Qin, S. Peng, S. Ramakrishna, *Carbon* **2019**, 142, 379.
- T. Wang, X. Liu, Z. Yan, Y. Teng, R. Li, J. Zhang, T. Peng, ACS Sustain. Chem. Eng.
 2020, 8, 1240.
- 63. P. Hao, W. Zhu, L. Li, J. Tian, J. Xie, F. Lei, G. Cui, Y. Zhang, B. Tang, *Electrochim. Acta* **2020**, 338, 135883.
- H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang, S. Jin, *Chem. Mater.* 2015, 27, 5702.