Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Achieving heat-resistant energetic compounds via silver-catalyzed one-pot

cycloaddition of ethyl 2-isocyanoacetate and nitrogen-rich diazonium

Yaqun Dong,^a Miao Li,^a Guangbin Cheng,^a Wei Huang,^a Yuji Liu,^{*a} Chuan Xiao,^{*b} Yongxing Tang^{*a} ^aSchool of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. E-mail: yujiliu@njust.edu.cn; yongxing@njust.edu.cn

^bChina Northern Industries Group Co., Ltd. (NORINCO GROUP), Beijing 100089, China

Table of Contents

1.	General	methods
S3		
2.	Computational	methods
S4		
3.	Crystallographic	data
S5		
4.	NMR	spectra
S20		
5. The test of	of five-second (5s)	delay exploding point
S32		
6. DSC plots		S37
7. The device image	of the 5 s bursting point	S37

1. General methods

Chemical reagents were purchased from Aladdin and Bide Pharm in analytical grade and were used without further purification. ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III 300 MHz nuclear magnetic resonance spectrometer. DMSO- d_6 was used as a locking solvent. The working frequencies for ¹H and ¹³C are 300 MHz and 76 MHz, respectively. Chemical shifts were reported relative to tetramethylsilane as internal standard. Decomposition temperatures were obtained on a TA Instruments DSC25 differential scanning calorimeter at a heating rate of 5 °C min⁻¹. Infrared spectra (IR) were recorded on a PerkinElmer Spectrum BX FT-IR instrument equipped with an ATR unit at 25 °C. Elemental analyses of C/H/N were performed on a Vario EL III Analyzer. Impact and friction sensitivities were measured with a BAM fallhammer and friction tester. X-ray intensity data were collected on a Bruker D8 VENTURE PHOTON II system equipped with an Incoatecius 3.0 Microfocus sealed tube. The structures were solved and refined using Bruker SHELXTL Software Package. The data were refined against F². All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were fixed to their parent atoms using a riding model and refined isotropically.

2. Computational methods

The gas-phase heats of formation were calculated based on isodesmic reactions (Scheme S1). The enthalpies of reaction were obtained by combining the MP2/6- $311++G^{**}$ energy difference for the reactions, the scaled zero-point energies (ZPE), values of thermal correction (HT), and other thermal factors. The solid-state heats of formation were calculated with Trouton's rule according to equation 1 (*T* represents either melting point or decomposition temperature when no melting occurs prior to decomposition).¹

Scheme S1. Isodesmic reactions for 2c, 3c, 4c and 5c.

3.Crystal structure data

compound	$2c \cdot NO_3 \cdot H_2O$	3c
Empirical formula	$C_6H_{10}N_{12}O_4$ $C_7H_7N_{11}O_2$	
Formula weight	314.26	277.24
Temperature [K]	200(2)	193.00
Crystal system	monoclinic	monoclinic
Space group	P2 ₁ /m	$P2_1/c$
<i>a</i> [Å]	7.7084(8)	5.7986(5)
<i>b</i> [Å]	6.2936(6)	13.7372(14)
<i>c</i> [Å]	13.2830(11)	14.8998(10)
α [Å]	90	90
β[Å]	90.277(7)	100.940(5)
γ [Å]	90	90
V [Å ³]	644.40(11)	1165.30(18)
Ζ	2	4
$ ho_{ m calcd} [m Mg \cdot m^{-3}]$	1.620	1.580
μ/mm ⁻¹	1.191	1.080
F(000)	324	568.0
Crystal size	0.1×0.03×0.02	0.13×0.11×0.1
Theta range for data	6.65 to 136.11 (0.83 Å)	8.83 to 137.462
collection		
index range	$-9 \le h \le 8, -7 \le k \le 7, -15 \le l \le 15$	$-6 \le h \le 6, -16 \le k \le 15, -16 \le l \le 17$
reflections collected	4552	7464
independent reflections (Rint)	$1425[R_{int}=0.1285,R_{sigma}=0.0733]$	$2129[R_{int}=0.0803,R_{sigma}=0.0613]$
data/restraints/ paraneters	1251/13/143	2129/3/197
GOF on F ²	0.960	0.956
Final R indexes [I>=2σ (I)]	$R_1 = 0.0823, wR_2 = 0.2139$	$R_1 = 0.0475, wR_2 = 0.1141$
Final R indexes [all data]	$R_1 = 0.1273, wR_2 = 0.2555$	$R_1 = 0.0839, wR_2 = 0.1318$
Largest diff. peak and hole	0.28/-0.34	0.19/-0.23
[eÅ-3]		
CCDC number	2289565	2289566

Table S1. Crystal data and structure refinement for $2c^{-}\cdot NO_3^{+}\cdot H_2O$ and 3c.

compound	4c	$\mathbf{5c} \cdot \mathbf{NO}_3^+ \cdot \mathbf{H}_2\mathbf{O}$
Empirical formula	$C_7H_6N_{12}O_4$	$C_7H_{11}N_{13}O_6$
Formula weight	322.24	373.29
Temperature [K]	273(2) K	193.00
Crystal system	monoclinic	triclinic
Space group	P2 ₁ /n	P-1
a [Å]	5.6440(8)	7.1369(4)
b [Å]	11.4599(13)	8.9590(5)
<i>c</i> [Å]	19.273(3)	12.3118(8)
α [Å]	90	99.449(2)
β [Å]	96.607(7)	101.389(2)
γ [Å]	90	110.266(2)
V [Å ³]	1238.3(3)	700.40(7)
Z	4	2
ρ _{caled} [Mg⋅m ⁻³]	1.729	1.770
μ/mm ⁻¹	1.268	0.153
F(000)	656	384.0
Crystal size	$0.220 \times 0.200 \times 0.180$	0.13 imes 0.11 imes 0.1
Theta range for data	4.497 to 66.881 (0.83 Å)	5.01 to 55.162
collection		
index range	-5 ≤h≤ 6, -13 ≤k≤ 13, -22 ≤l≤ 22	$-8 \le h \le 9, -11 \le k \le 11, -15 \le l \le 15$
reflections collected	10577	15036
independent reflections	2170 [R(int) = 0.1287]	$3223 [R_{int} = 0.0674, R_{sigma} = 0.0473]$
(Rint)		-
data/restraints/ paraneters	2170/0/208	3223/0/239
GOF on F ²	1.081	1.045
Final R indexes [I>=2σ (I)]	$R_1 = 0.0683, wR_2 = 0.1892$	$R_1 = 0.0481, wR_2 = 0.1149$
Final R indexes [all data]	$R_1 = 0.0855, wR_2 = 0.2052$	$R_1 = 0.0661, wR_2 = 0.1325$
Largest diff. peak and	0.426 and -0.346	0.36 and -0.46
hole [eÅ ⁻³]		
CCDC number	2289564	2289562

Table S1. Crystal data and structure refinement for 4c and 5c-·NO₃⁺·H₂O.

	X	У	Z	U(eq)
N1	0.1975(9)	0.250000	0.4621(5)	0.0510(16)
C4	0.1382(10)	0.250000	0.3672(5)	0.0477(18)
N3	0.0513(9)	0.250000	0.5162(5)	0.0478(15)
N12	0.2028(9)	0.250000	0.6726(5)	0.0521(17)
N4	-0.0382(10)	0.250000	0.3596(5)	0.0526(16)
C3	-0.0865(11)	0.250000	0.4542(6)	0.0491(18)
Н3	-0.203702	0.250000	0.475873	0.059
C6	0.2544(11)	0.250000	0.2834(5)	0.0500(19)
N10	0.5380(11)	0.250000	0.3830(5)	0.070(2)
H10A	0.521296	0.135840	0.424210	0.104
H10B	0.539705	0.375827	0.417126	0.104
C1	0.0575(11)	0.250000	0.6235(6)	0.0475(17)
N8	0.4359(10)	0.250000	0.2947(5)	0.0537(17)
N2	0.1467(9)	0.250000	0.7695(5)	0.0562(18)
H2A	0.214346	0.250000	0.823053	0.067
N11	-0.0870(9)	0.250000	0.6772(5)	0.0513(17)
C2	-0.0224(12)	0.250000	0.7710(6)	0.0522(19)
H2	-0.090451	0.250000	0.830471	0.063
05	0.5590(9)	0.250000	0.5920(4)	0.0699(18)
H5A	0.466(7)	0.250000	0.626(6)	0.105
H5B	0.639(9)	0.250000	0.636(6)	0.105
C7	0.5021(11)	0.250000	0.2015(6)	0.052(2)
N9	0.5404(10)	0.250000	-0.0994(5)	0.0567(18)
N7	0.6744(10)	0.250000	0.1834(5)	0.0566(17)
H7A	0.718(7)	0.250000	0.121(2)	0.085
H7B	0.755(6)	0.27(6)	0.231(4)	0.085
N5	0.2153(10)	0.250000	0.1877(6)	0.0600(18)
04	0.5612(9)	0.250000	-0.1912(4)	0.0738(19)
N6	0.3711(9)	0.250000	0.1391(5)	0.0555(18)
H6	0.381798	0.250000	0.073147	0.067
02	0.3859(9)	0.250000	-0.0669(5)	0.0723(19)
03	0.6634(10)	0.250000	-0.0392(5)	0.078(2)

Table S3. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters $(Å^2 \times 10^3)$ for $2c^{-} \cdot NO_3^{+} \cdot H_2O$. Use is defined as 1/3 of the trace of the orthogonalised Uij tensor.

Table S4. Bond lengths [Å] and angles [°] for $2c \cdot NO_3^+ \cdot H_2O$.

6 1			
N1-C4	1.339(10)	C4–N1–N3	102.8(6)
N1-N3	1.340(9)	N1-C4-N4	113.9(7)
C4–N4	1.364(11)	N1-C4-C6	121.3(7)
C4–C6	1.431(10)	N4-C4-C6	124.8(7)
N3-C3	1.341(10)	N1-N3-C3	109.6(6)
N3-C1	1.426(9)	N1-N3-C1	120.8(6)
N12-C1	1.293(11)	C3-N3-C1	129.6(7)
N12–N2	1.360(9)	C1-N12-N2	101.4(6)
N4-C3	1.311(11)	C3–N4–C4	102.5(7)
C6-N5	1.306(10)	N4-C3-N3	111.2(7)
C6-N8	1.406(11)	N5-C6-N8	109.2(7)
N10-N8	1.410(9)	N5-C6-C4	127.9(8)
C1-N11	1.325(11)	N8-C6-C4	122.9(7)
N8-C7	1.341(10)	N12-C1-N11	117.2(6)
N2-C2	1.304(11)	N12-C1-N3	121.9(7)
N11-C2	1.340(10)	N11-C1-N3	120.9(7)
C7–N6	1.304(11)	C7-N8-C6	106.6(7)
C7–N7	1.351(12)	C7-N8-N10	123.7(7)
N9-O4	1.230(9)	C6-N8-N10	129.8(7)
N9-O3	1.238(10)	C2–N2–N12	109.7(7)
N9-O2	1.269(10)	C1-N11-C2	101.0(7)
N5-N6	1.367(10)	N2-C2-N11	110.6(7)
		N6-C7-N8	106.8(7)
		N6-C7-N7	130.3(7)
		N8-C7-N7	122.9(8)
		O4-N9-O3	122.5(8)
		O4–N9–O2	117.7(8)
		O3-N9-O2	119.8(7)
		C6-N5-N6	105.1(7)
		C7-N6-N5	112.3(6)

Table S5. Anisotropic displacement parameters (Å² x 10³) for $2c^{-}NO_3^+H_2O$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$.

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹ 3	U ¹²
N1	0.049(4)	0.067(4)	0.037(3)	0.000	0.010(3)	0.000
C4	0.055(5)	0.056(5)	0.032(3)	0.000	0.005(3)	0.000
N3	0.049(4)	0.054(4)	0.040(3)	0.000	0.000(3)	0.000
N12	0.063(4)	0.062(4)	0.031(3)	0.000	0.001(3)	0.000
N4	0.062(4)	0.055(4)	0.042(3)	0.000	0.000(3)	0.000
C3	0.051(5)	0.056(4)	0.040(4)	0.000	-0.003(3)	0.000
C6	0.060(5)	0.058(5)	0.032(4)	0.000	0.003(3)	0.000

N10	0.061(4)	0.118(6)	0.029(3)	0.000	-0.009(3)	0.000
C1	0.055(5)	0.047(4)	0.040(4)	0.000	-0.006(4)	0.000
N8	0.060(4)	0.073(4)	0.028(3)	0.000	0.000(3)	0.000
N2	0.061(5)	0.072(5)	0.036(3)	0.000	0.003(3)	0.000
N11	0.053(4)	0.058(4)	0.042(3)	0.000	-0.001(3)	0.000
C2	0.062(5)	0.060(5)	0.035(3)	0.000	0.002(3)	0.000
05	0.054(3)	0.120(5)	0.035(3)	0.000	-0.001(3)	0.000
C7	0.067(5)	0.055(5)	0.033(4)	0.000	0.005(4)	0.000
N9	0.062(5)	0.066(4)	0.042(4)	0.000	0.000(3)	0.000
N7	0.057(4)	0.079(5)	0.033(3)	0.000	0.001(3)	0.000
N5	0.055(4)	0.078(5)	0.047(4)	0.000	0.002(3)	0.000
04	0.078(4)	0.114(6)	0.029(3)	0.000	0.000(3)	0.000
N6	0.057(4)	0.073(5)	0.036(3)	0.000	0.004(3)	0.000
02	0.068(4)	0.105(5)	0.044(3)	0.000	0.004(3)	0.000
03	0.074(4)	0.113(6)	0.046(3)	0.000	-0.007(3)	0.000

Table S6. Torsion angles [°] for $2\mathbf{c} \cdot \mathbf{NO}_3^+ \cdot \mathbf{H}_2 \mathbf{O}$.

1 _0 1103 11201		
180.0(1)	N(10)-N(8)-C(6)-N(5)	180.00(1)
0(1)	N(10)-N(8)-C(6)-C(4)	0.00(1)
0(1)	C(7)-N(8)-C(6)-N(5)	0.00(1)
-180.0(1)	C(7)-N(8)-C(6)-C(4)	-180.00(1)
-149.9(2)	N(1)-N(8)-C(7)-N(6)	-180.00(1)
0.00(1)	N(10)-N(8)-C(7)-N(7)	0.00(1)
180.00(1)	C(6)-N(8)-C(7)-N(6)	0.00(1)
0.00(1)	C(6)-N(8)-C(7)-N(7)	180.00(1)
0.00(1)	C(2)-N(11)-C(1)-N(3)	180.00(1)
180.00(1)	C(2)-N(11)-C(1)N(12)	0.00(1)
0.00(1)	C(1)-N(11)-C(2)-N(2)	0.00(1)
180.00(1)	N(2)-N(12)-C(1)-N(3)	180.00(1)
0.00(1)	N(2)-N(12)-C(1)-N(11)	0.00(1)
0.00(1)	N(1)-C(4)-C(6)-N(5)	-180.00(1)
180.00(1)	N(1)-C(4)-C(6)-N(8)	0.00(1)
180.00(1)	N(4)-C(4)-C(6)-N(5)	0.00(1)
0.00(1)	N(4)-C(4)-C(6)-N(8)	-180.00(1)
	$\begin{array}{c} 180.0(1) \\ 0(1) \\ 0(1) \\ -180.0(1) \\ -149.9(2) \\ 0.00(1) \\ 180.00(1) \\ 0.00(1) \\ 180.00(1) \\ 0.00(1) \\ 180.00(1) \\ 0.00(1) \\ 180.00(1) \\ 180.00(1) \\ 180.00(1) \\ 180.00(1) \\ 0.00(1) \\ \end{array}$	180.0(1) $N(10)-N(8)-C(6)-N(5)$ $0(1)$ $N(10)-N(8)-C(6)-C(4)$ $0(1)$ $C(7)-N(8)-C(6)-N(5)$ $-180.0(1)$ $C(7)-N(8)-C(6)-C(4)$ $-149.9(2)$ $N(1)-N(8)-C(7)-N(6)$ $0.00(1)$ $N(10)-N(8)-C(7)-N(6)$ $0.00(1)$ $C(6)-N(8)-C(7)-N(7)$ $180.00(1)$ $C(6)-N(8)-C(7)-N(6)$ $0.00(1)$ $C(6)-N(8)-C(7)-N(7)$ $0.00(1)$ $C(2)-N(11)-C(1)-N(3)$ $180.00(1)$ $C(2)-N(11)-C(1)-N(3)$ $180.00(1)$ $C(2)-N(11)-C(1)-N(3)$ $0.00(1)$ $N(2)-N(12)-C(1)-N(3)$ $0.00(1)$ $N(2)-N(12)-C(1)-N(3)$ $0.00(1)$ $N(1)-C(4)-C(6)-N(5)$ $180.00(1)$ $N(1)-C(4)-C(6)-N(8)$ $180.00(1)$ $N(4)-C(4)-C(6)-N(5)$ $0.00(1)$ $N(4)-C(4)-C(6)-N(8)$

	x	У	Z	U(eq)
C1	9014(5)	2546(2)	6941(2)	36.1(6)
C2	7175(4)	3004(2)	6378.9(19)	33.5(6)
C3	7524(4)	2835(2)	5485.2(19)	34.0(6)
C4	3858(4)	3077(2)	4325(2)	38.3(7)
C5	5471(4)	3725(2)	3331.3(18)	31.1(6)
C6	5645(4)	4144(2)	2452.1(18)	30.9(6)
C7	6868(5)	4885(2)	1345.7(19)	37.9(7)
N1	5378(4)	3539.1(19)	6697.0(17)	41.3(6)
N2	10289(4)	2145.7(18)	6389.4(15)	37.3(6)
N3	9428(4)	2306.0(19)	5492.1(16)	37.2(6)
N4	6189(4)	3142.2(18)	4644.7(15)	34.5(6)
N5	7258(3)	3563.2(18)	3995.1(15)	33.7(5)
N6	3310(3)	3436.9(19)	3497.1(16)	37.8(6)
N7	4060(4)	4045.6(19)	1727.1(15)	37.5(6)
N8	4774(4)	4510(2)	999.1(16)	44.3(6)
N9	8209(5)	5425(3)	889(2)	55.3(8)
N10	7496(4)	4662.5(17)	2243.0(15)	31.5(5)
N11	9539(4)	5027(2)	2809.1(17)	36.1(6)
01	5376(4)	3534.1(19)	7515.6(16)	59.2(7)
02	3929(4)	3971.5(17)	6127.6(15)	52.0(6)

Table S7. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters(Å² $\times 10^3$) for **3c**. Ueq is defined as 1/3 of of the trace of the orthogonalised Uij tensor.

Table S8. Bon	d lengths	[Å] an	d angles [°] for 3c .
---------------	-----------	--------	------------	--------------------

	0 1 0 1		
C1-C2	1.377(4)	N2-C1-C2	105.7(2)
C1-N2	1.325(4)	C1-C2-C3	105.5(2)
C2-C3	1.404(4)	C1-C2-N1	124.3(3)
C2-N1	1.427(4)	C3-C2-N1	130.2(3)
C3-N3	1.321(3)	C2-C3-N4	129.9(2)
C3-N4	1.406(4)	N3-C3-C2	110.8(2)
C4-N4	1.348(3)	N3-C3-N4	119.3(2)
C4-N6	1.311(4)	N6-C4-N4	110.8(2)
C5-C6	1.452(4)	N5-C5-C6	124.6(2)
C5-N5	1.308(3)	N5-C5-N6	115.6(2)
C5-N6	1.452(4)	N6-C5-C6	119.7(2)
C6-N7	1.286(3)	N7-C6-C5	123.7(2)
C6-N10	1.373(3)	N7-C6-N10	109.2(2)
C7-N8	1.330(4)	N10-C6-C5	127.0(2)
C7-N9	1.348(4)	N8-C7-N9	126.0(3)
C7-N10	1.352(4)	N8-C7-N10	110.6(2)
N1-01	1.220(3)	N9-C7-N10	123.4(3)

N1-O2	1.228(3)	01-N1-C2	117.9(2)
N2-N3	1.353(3)	01-N1-02	124.3(2)
N4-N5	1.372(3)	O2-N1-C2	117.8(2)
N7-N8	1.388(3)	C1-N2-N3	113.6(2)
N10-N11	1.409(3)	C3-N3-N2	104.4(2)
		C4-N4-C3	129.8(2)

Table S9. Anisotropic displacement parameters (Å² x 10³) for **3c**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹⁺ ... + 2 h k a* b* U¹²].

Atom	U ¹¹	U ²²	U ³³	<u> </u>	U13	U ¹²
C (1)	42.1(14)	39.2(17)	28.0(15)	1.9(12)	9.1(11)	-3.6(12)
C(2)	36.4(13)	33.0(15)	33.3(16)	2.8(12)	11.7(11)	0.1(11)
C(3)	31.4(12)	38.9(17)	32.9(15)	5.9(13)	9.0(10)	-1.1(11)
C(4)	31.6(13)	50.9(19)	33.6(16)	5.4(13)	9.3(11)	-3.0(12)
C(5)	28.7(12)	36.3(16)	28.6(14)	-0.2(12)	6.1(10)	-0.3(11)
C(6)	30.1(12)	33.9(16)	29.0(14)	2.4(12)	6.6(10)	1.2(11)
C(7)	39.9(14)	44.6(18)	30.6(15)	4.6(13)	10.3(12)	-1.0(12)
N(1)	47.9(13)	41.7(16)	36.5(14)	-0.1(12)	14.0(11)	5.5(11)
N(2)	34.3(11)	47.2(16)	30.4(13)	5.9(11)	5.9(9)	3.8(10)
N(3)	32.8(11)	48.5(16)	31.0(13)	6.4(11)	7.7(9)	4.4(10)
N(4)	28.4(10)	46.5(15)	28.9(12)	7.0(11)	6.4(9)	-0.2(10)
N(5)	33.6(11)	42.1(14)	26.4(12)	5.9(10)	8.1(9)	-1.6(10)
N(6)	30.8(11)	52.7(17)	31.2(13)	4.7(12)	9.2(9)	-3.3(10)
N(7)	37.6(11)	48.0(16)	26.4(13)	2.0(11)	4.9(10)	-3.5(10)
N(8)	45.1(13)	60.1(18)	27.3(13)	7.9(12)	5.6(10)	-12.1(12)
N(9)	51.5(16)	78(2)	36.6(16)	15.2(15)	7.5(13)	-17.2(15)
N(10)	31.1(10)	37.7(14)	25.6(12)	2.5(10)	5.2(9)	-1.0(9)
N(11)	31.6(11)	41.2(16)	35.4(14)	-1.2(12)	5.7(10)	-3.8(11)
O (1)	81.4(15)	63.5(17)	38.5(13)	1.7(12)	26.2(11)	21.9(13)
O(2)	57.4(12)	53.3(15)	45.1(13)	1.3(11)	9.1(10)	21.9(11)

Table S10. Torsion angles $[^{\circ}]$ for 3c.

C(1)-C(2)-C(3)-N(3)	0.4(3)	N(2)-C(1)-C(2)-N(1)	-179.3(3)
C(1)-C(2)-C(3)-N(4)	-179.4(3)	N(3)-C(3)-N(4)-C(4)	130.3(3)
C(1)-C(2)-N(1)-O(1)	-5.4(4)	N(3)-C(3)-N(4)-N(5)	-48.1(4)
C(1)-C(2)-N(1)-O(2)	174.9(3)	N(4)-C(3)-N(3)-N(2)	179.5(2)
C(1)-N(2)-N(3)-C(3)	0.2(3)	N(4)-C(4)-N(6)-C(5)	0.2(3)
C(2)-C(1)-N(2)-N(3)	0.1(3)	N(5)-C(5)-C(6)-N(7)	159.1(3)
C(2)-C(3)-N(3)-N(2)	-0.4(3)	N(5)-C(5)-C(6)-N(10)	-18.2(5)
C(2)-C(3)-N(4)-C(4)	-49.9(5)	N(5)-C(5)-N(6)-C(4)	0.0(3)
C(2)-C(3)-N(4)-N(5)	131.6(3)	N(6)-C(4)-N(4)-C(3)	-178.9(3)
C(3)-C(2)-N(1)-O(1)	175.8(3)	N(6)-C(4)-N(4)-N(5)	-0.3(4)

C(3)-C(2)-N(1)-O(2)	-3.9(5)	N(6)-C(5)-C(6)-N(7)	-18.7(4)
C(3)-N(4)-N(5)-C(5)	179.1(3)	N(6)-C(5)-C(6)-N(10)	164.0(3)
C(4)-N(4)-N(5)-C(5)	0.3(3)	N(6)-C(5)-N(5)-N(4)	-0.2(3)
C(5)-C(6)-N(7)-N(8)	-178.6(3)	N(7)-C(6)-N(10)-C(7)	1.4(3)
C(5)-C(6)-N(10)-C(7)	179.0(3)	N(7)-C(6)-N(10)-N(11)	173.9(3)
C(5)-C(6)-N(10)-N(11)	-8.5(5)	N(8)-C(7)-N(10)-C(6)	-1.5(3)
C(6)-C(5)-N(5)-N(4)	-178.1(3)	N(8)-C(7)-N(10)-N(11)	-174.6(3)
C(6)-C(5)-N(6)-C(4)	178.0(3)	N(9)-C(7)-N(8)-N(7)	-178.1(3)
C(6)-N(7)-N(8)-C(7)	0.0(3)	N(9)-C(7)-N(10)-C(6)	177.7(3)
N(1)-C(2)-C(3)-N(3)	179.4(3)	N(9)-C(7)-N(10)-N(11)	4.5(5)
N(1)-C(2)-C(3)-N(4)	-0.4(5)	N(10)-C(6)-N(7)-N(8)	-0.9(3)
N(2)-C(1)-C(2)-C(3)	-0.3(3)	N(10)-C(7)-N(8)-N(7)	1.0(3)

Table S11. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for **3**c

Atom	X	У	Z	U(eq)
H1	9307.49	2521.58	7590.24	43
H(4)	2761.49	2806.36	4654.76	46
H(2)	11573.8	1807.73	6587.48	45
H(9A)	9660(40)	5560(20)	1190(20)	46(9)
H(9B)	7680(60)	5420(30)	296(13)	54(10)
H(11A)	9100(60)	5340(30)	3280(20)	61(11)
H(11B)	10270(70)	4530(30)	3040(30)	66(12)

Table S12. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **4c**. Ueq is defined as 1/3 of the trace of the orthogonalised Uij tensor.

	X	У	Z	U(eq)
C1	3998(6)	2494(3)	6606(2)	45(1)
C2	2388(6)	3350(2)	6379(2)	42(1)
C3	716(6)	2709(3)	5949(2)	45(1)
C4	1030(7)	5133(3)	6937(2)	54(1)
C5	3279(6)	6320(2)	6522(2)	44(1)
C6	4351(6)	7438(2)	6373(2)	44(1)
C7	6655(7)	8752(3)	5968(2)	47(1)
N1	6193(6)	2595(3)	7075(2)	58(1)
N2	3372(6)	1449(2)	6337(1)	52(1)
N3	1277(6)	1574(2)	5930(1)	53(1)
N4	-1398(6)	3112(3)	5533(1)	62(1)
N5	2410(5)	4558(2)	6540(1)	44(1)
N6	3905(5)	5316(2)	6261(1)	48(1)
N7	1484(6)	6258(2)	6940(2)	57(1)
N8	6243(5)	7587(2)	5992(1)	43(1)

N9	5078(6)	9238(2)	6323(1)	54(1)
N10	3602(6)	8437(2)	6579(2)	54(1)
N11	7444(6)	6780(2)	5618(2)	59(1)
N12	8309(6)	9253(2)	5640(2)	64(1)
01	7499(6)	1746(3)	7142(2)	84(1)
02	6522(6)	3526(2)	7381(2)	79(1)
03	-2630(6)	2379(3)	5203(2)	99(1)
O4	-1812(7)	4145(3)	5521(2)	100(1)

 Table S13. Bond lengths [Å] and angles [°] for 4c.

C1-N2	1.336(4)	N2-C1-C2	112.4(3)
C1-C2	1.374(4)	N2-C1-N1	118.8(3)
C1-N1	1.451(5)	C2-C1-N1	128.9(3)
C2-C3	1.392(4)	C1-C2-C3	101.0(3)
C2-N5	1.419(4)	C1-C2-N5	129.7(3)
C3-N3	1.339(4)	C3-C2-N5	129.3(3)
C3-N4	1.435(5)	N3-C3-C2	112.5(3)
C4-N7	1.315(4)	N3-C3-N4	118.8(3)
C4-N5	1.328(4)	C2-C3-N4	128.7(3)
С4-Н4	0.9300	N7-C4-N5	111.2(3)
C5-N6	1.321(4)	N7-C4-H4	124.4
C5-N7	1.366(5)	N5-C4-H4	124.4
C5-C6	1.459(4)	N6-C5-N7	115.4(3)
C6-N10	1.299(4)	N6-C5-C6	123.7(3)
C6-N8	1.374(4)	N7-C5-C6	121.0(3)
C7-N9	1.308(4)	N10-C6-N8	110.7(3)
C7-N12	1.317(4)	N10-C6-C5	123.8(3)
C7-N8	1.358(4)	N8-C6-C5	125.4(3)
N1-O1	1.219(4)	N9-C7-N12	129.0(3)
N1-O2	1.223(4)	N9-C7-N8	105.7(3)
N2-N3	1.349(4)	N12-C7-N8	125.3(3)
N4-O4	1.206(4)	01-N1-02	126.0(4)
N4-O3	1.221(4)	01-N1-C1	117.8(3)
N5-N6	1.363(3)	O2-N1-C1	116.2(3)
N8-N11	1.394(4)	C1-N2-N3	107.7(3)
N9-N10	1.368(4)	C3-N3-N2	106.4(2)
N9-H9	0.8600	O4-N4-O3	124.5(4)
N11-H11A	0.8600	O4-N4-C3	118.3(3)
N11-H11B	0.8600	O3-N4-C3	117.1(3)
N12-H12A	0.8600	C4-N5-N6	110.0(2)
N12-H12B	0.8600	C4-N5-C2	128.2(3)
		N6-N5-C2	121.7(3)

C5-N6-N5	101.5(2)
C4-N7-C5	101.9(3)
C7-N8-C6	106.7(3)
C7-N8-N11	122.6(3)
C6-N8-N11	130.3(2)
C7-N9-N10	112.5(3)
С7-N9-Н9	123.7
N10-N9-H9	123.7
C6-N10-N9	104.3(3)
N8-N11-H11A	120.0
N8-N11-H11B	120.0
H11A-N11-H11B	120.0
C7-N12-H12A	120.0
C7-N12-H12B	120.0
H12A-N12-H12B	120.0

Table S14. Anisotropic displacement parameters (Å² x 10³) for **4c.** The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹+ ... + 2 h k a^{*} b^{*} U¹²].

Atom	U ¹¹	U22	U ³³	U23	U ¹³	U ¹²
C(1)	58(2)	30(2)	44(2)	2(1)	0(1)	-1(1)
C(2)	64(2)	20(1)	41(2)	-1(1)	4(1)	-4(1)
C(3)	62(2)	32(2)	40(2)	-4(1)	-2(1)	-4(2)
C(4)	80(3)	30(2)	54(2)	-3(1)	19(2)	-5(2)
C(5)	63(2)	22(2)	45(2)	-2(1)	-3(2)	-2(1)
C(6)	61(2)	26(2)	44(2)	-4(1)	-5(2)	2(1)
C(7)	70(2)	22(2)	45(2)	-3(1)	-5(2)	-1(2)
N(1)	63(2)	50(2)	61(2)	8(1)	1(2)	-6(2)
N(2)	75(2)	22(1)	56(2)	-3(1)	2(1)	0(1)
N(3)	76(2)	29(1)	51(2)	-9(1)	-1(1)	-5(1)
N(4)	71(2)	65(2)	48(2)	-8(1)	-7(2)	6(2)
N(5)	65(2)	21(1)	47(1)	-2(1)	6(1)	-4(1)
N(6)	66(2)	21(1)	58(2)	-2(1)	8(1)	-5(1)
N(7)	83(2)	29(1)	60(2)	-7(1)	19(2)	-2(1)
N(8)	55(2)	23(1)	48(1)	-3(1)	-3(1)	-1(1)
N(9)	75(2)	20(1)	64(2)	-2(1)	2(2)	-4(1)
N(10)	71(2)	24(1)	66(2)	-3(1)	6(2)	-3(1)
N(11)	70(2)	26(1)	84(2)	-5(1)	25(2)	-2(1)
N(12)	89(2)	28(2)	77(2)	-4(1)	15(2)	-12(2)
O(1)	68(2)	81(2)	99(2)	8(2)	-4(2)	23(2)
O(2)	89(2)	52(2)	88(2)	0(1)	-24(2)	-22(2)
O(3)	94(2)	107(3)	85(2)	-9(2)	-38(2)	-22(2)
O(4)	118(3)	71(2)	100(2)	-22(2)	-35(2)	46(2)

10.				
Atom	X	У	Z	U(eq)
H(4)	-109	4784	7182	64
H(9)	4979	9977	6389	65
H(11A)	8494	7015	5360	70
H(11B)	7134	6048	5646	70
H(12A)	8449	10000	5643	77
H(12B)	9248	8832	5422	77

Table S15. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **4c**.

 Table S16. Torsion angles [°] for 4c.

N(2)-C(1)-C(2)-C(3)	0.4(4)	N(7)-C(4)-N(5)-C(2)	-176.9(3)
N(1)-C(1)-C(2)-C(3)	179.9(3)	C(1)-C(2)-N(5)-C(4)	-107.9(4)
N(2)-C(1)-C(2)-N(5)	-179.9(3)	C(3)-C(2)-N(5)-C(4)	71.8(5)
N(1)-C(1)-C(2)-N(5)	-0.3(6)	C(1)-C(2)-N(5)-N(6)	74.7(4)
C(1)-C(2)-C(3)-N(3)	0.6(4)	C(3)-C(2)-N(5)-N(6)	-105.6(4)
N(5)-C(2)-C(3)-N(3)	-179.1(3)	N(7)-C(5)-N(6)-N(5)	-0.6(4)
C(1)-C(2)-C(3)-N(4)	-177.8(3)	C(6)-C(5)-N(6)-N(5)	-179.2(3)
N(5)-C(2)-C(3)-N(4)	2.4(6)	C(4)-N(5)-N(6)-C(5)	-0.1(3)
N(6)-C(5)-C(6)-N(10)	173.8(3)	C(2)-N(5)-N(6)-C(5)	177.7(3)
N(7)-C(5)-C(6)-N(10)	-4.7(5)	N(5)-C(4)-N(7)-C(5)	-1.0(4)
N(6)-C(5)-C(6)-N(8)	-5.2(5)	N(6)-C(5)-N(7)-C(4)	1.0(4)
N(7)-C(5)-C(6)-N(8)	176.3(3)	C(6)-C(5)-N(7)-C(4)	179.6(3)
N(2)-C(1)-N(1)-O(1)	7.9(5)	N(9)-C(7)-N(8)-C(6)	0.4(3)
C(2)-C(1)-N(1)-O(1)	-171.6(3)	N(12)-C(7)-N(8)-C(6)	-178.9(3)
N(2)-C(1)-N(1)-O(2)	-170.2(3)	N(9)-C(7)-N(8)-N(11)	174.3(3)
C(2)-C(1)-N(1)-O(2)	10.3(5)	N(12)-C(7)-N(8)-N(11)	-5.0(5)
C(2)-C(1)-N(2)-N(3)	-1.3(4)	N(10)-C(6)-N(8)-C(7)	0.0(4)
N(1)-C(1)-N(2)-N(3)	179.2(3)	C(5)-C(6)-N(8)-C(7)	179.1(3)
C(2)-C(3)-N(3)-N(2)	-1.4(4)	N(10)-C(6)-N(8)-N(11)	-173.2(3)
N(4)-C(3)-N(3)-N(2)	177.2(3)	C(5)-C(6)-N(8)-N(11)	5.9(5)
C(1)-N(2)-N(3)-C(3)	1.6(4)	N(12)-C(7)-N(9)-N(10)	178.6(3)
N(3)-C(3)-N(4)-O(4)	-175.6(4)	N(8)-C(7)-N(9)-N(10)	-0.6(3)
C(2)-C(3)-N(4)-O(4)	2.8(6)	N(8)-C(6)-N(10)-N(9)	-0.4(3)
N(3)-C(3)-N(4)-O(3)	2.8(5)	C(5)-C(6)-N(10)-N(9)	-179.5(3)
C(2)-C(3)-N(4)-O(3)	-178.8(3)	C(7)-N(9)-N(10)-C(6)	0.6(4)
N(7)-C(4)-N(5)-N(6)	0.7(4)		

	X	У	Z	U(eq)
C1	1735(3)	-765(2)	5307.0(17)	22.6(4)
C2	3344(3)	829(2)	5647.7(16)	21.7(4)
C3	3698(3)	1206(2)	4605.1(16)	21.2(4)
C4	6550(3)	4054(2)	5046.1(17)	26.0(4)
C5	6470(3)	4007(2)	3332.4(16)	23.1(4)
C6	7015(3)	4539(2)	2341.4(16)	23.6(4)
C7	7266(3)	4524(2)	590.9(17)	26.1(4)
N1	804(3)	-1741(2)	5908.2(15)	27.2(4)
N2	1278(3)	-1186(2)	4162.7(14)	25.5(4)
N3	2452(3)	-2(2)	3714.9(14)	24.7(4)
N4	4373(3)	1654(2)	6785.4(14)	28.7(4)
N5	5084(3)	2603(2)	4370.1(13)	22.1(4)
N6	5025(3)	2568(2)	3246.0(14)	25.0(4)
N7	7455(3)	4978(2)	4420.1(14)	26.6(4)
N8	8181(3)	6044(2)	2386.9(14)	27.5(4)
N9	8332(3)	6028(2)	1284.7(14)	28.2(4)
N10	6407(3)	3552(2)	1243.9(14)	24.5(4)
N11	5285(3)	1857(2)	777.3(15)	30.5(4)
N12	7054(3)	4024(2)	-505.7(15)	36.7(5)
01	3748(3)	1020.3(19)	7536.3(13)	37.8(4)
02	5872(3)	2971(2)	7022.4(14)	53.8(6)
N13	628(3)	2607(2)	1653.6(17)	33.7(4)
03	789(3)	3850(2)	2345(2)	72.0(7)
O 4	1782(3)	2733(3)	1005.6(17)	57.7(6)
05	-683(3)	1251(2)	1624.9(15)	41.7(4)
O 6	1237(3)	-1090.8(19)	1267.8(13)	38.1(4)

Table S17. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for $5c^{-}\cdot NO_3^{+}\cdot H_2O$. Useq is defined as 1/3 of the trace of the orthogonalised Uij tensor.

Table S18. Bond lengths [Å] and angles [°] for $5c^{-}NO_3^{+}H_2O$.

Tuble S101 Della lenguis		1103 11201		
C1-C2	1.418(3)	N1-C1-C2	131.70(18)	
C1-N1	1.326(3)	N1-C1-N2	123.34(18)	
C1-N2	1.339(3)	N2-C1-C2	104.95(17)	
C2-C3	1.427(3)	C1-C2-C3 104.97(16)		
C2-N4	1.388(2)	N4-C2-C1	123.01(18)	
C3-N3	1.312(2)	N4-C2-C3 131.74(18)		
C3-N5	1.415(2)	N3-C3-C2 111.18(17)		
C4-N5	1.355(3)	N3-C3-N5	116.33(17)	
C4-N7	1.316(3)	N5-C3-C2 132.48(17)		
C5-C6	1.455(3)	N7-C4-N5 110.48(18)		
C5-N6	1.315(2)	N6-C5-C6	122.66(17)	
C5-N7	1.366(2)	N6-C5-N7 115.67(17)		
C6-N8	1.301(3)	N7-C5-C6	121.67(18)	
C6-N10	1.381(2)	N8-C6-C5	123.36(18)	
C7-N9	1.334(3)	N8-C6-N10	110.77(17)	
C7-N10	1.354(3)	N10-C6-C5	125.87(18)	
C7-N12	1.312(3)	N9-C7-N10	106.41(17)	
N2-N3	1.374(2)	N12-C7-N9	128.7(2)	
N4-O1	1.239(2)	N12-C7-N10	124.91(19)	
N4-O2	1.229(2)	C1-N2-N3	113.78(16)	
N5-N6	1.371(2)	C3-N3-N2	105.12(16)	
N8-N9	1.380(2)	O1-N4-C2	118.24(17)	
N10-N11	1.403(2)	O2-N4-C2	119.81(18)	
N13-O3	1.240(3)	O2-N4-O1	121.95(17)	
N13-O4	1.246(3)	C4-N5-C3	133.09(17)	
N13-O5	1.240(2)	C4-N5-N6	109.30(16)	
		N6-N5-C3	117.61(15)	
		C5-N6-N5	102.01(15)	
		C4-N7-C5	102.53(17)	
		C6-N8-N9	105.20(16)	
		C7-N9-N8	110.82(17)	
		C6-N10-N11	132.55(17)	
		C7-N10-C6	106.80(16)	
		C7-N10-N11	120.47(16)	
		O3-N13-O4	119.9(2)	
		O3-N13-O5	119.0(2)	
		O5-N13-O4	121.0(2)	

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C1	21.5(9)	21.6(9)	23.6(10)	4.3(8)	6.8(7)	7.4(8)
C2	21.6(9)	18.8(9)	18.8(9)	2.7(7)	3.4(7)	3.1(7)
C3	20.4(9)	20.1(9)	20.4(9)	4.0(7)	5.6(7)	5.2(7)
C4	29.2(10)	21.3(9)	20.4(10)	4.0(8)	5.6(8)	2.8(8)
C5	23.0(9)	22.3(10)	20.2(10)	4.3(8)	5.6(7)	5.2(8)
C6	24.0(10)	22.2(10)	19.2(9)	3.4(8)	4.3(7)	4.4(8)
C7	27.8(10)	24.5(10)	20.9(10)	5.0(8)	5.8(8)	4.9(8)
N1	29.6(9)	22.0(8)	22.8(9)	4.8(7)	6.4(7)	2.5(7)
N2	25.4(9)	19.5(8)	22.3(9)	2.5(7)	4.5(7)	0.0(7)
N3	24.2(8)	22.0(8)	21.0(8)	3.5(7)	4.4(7)	2.7(7)
N4	31.1(9)	24.6(9)	20.2(8)	4.7(7)	7.0(7)	-0.6(7)
N5	23.4(8)	21.7(8)	17.0(8)	3.8(6)	4.5(6)	5.0(7)
N6	26.9(9)	24.0(9)	18.2(8)	5.3(7)	5.3(7)	3.3(7)
N7	30.4(9)	22.0(8)	21.2(8)	4.2(7)	6.9(7)	3.7(7)
N8	33.4(10)	23.0(9)	19.8(8)	4.6(7)	7.8(7)	3.8(7)
N9	36.3(10)	22.5(8)	19.1(8)	6.0(7)	9.5(7)	2.2(7)
N10	27.2(9)	20.0(8)	18.1(8)	2.6(6)	5.0(7)	1.2(7)
N11	34.2(10)	19.9(8)	25.8(9)	0.5(7)	7.1(8)	0.1(7)
N12	50.4(12)	26.8(9)	19.1(9)	2.1(7)	10.2(8)	0.2(9)
01	46.0(10)	33.9(9)	21.6(8)	7.8(6)	11.6(7)	-0.2(7)
02	58.7(12)	38.3(10)	22.1(8)	1.2(7)	4.6(8)	-24.4(9)
N13	27.1(9)	30.9(10)	39.9(11)	14.5(8)	5.4(8)	7.4(8)
03	54.0(13)	33.4(11)	105.0(19)	-12.9(11)	4.0(12)	12.6(9)
04	41.3(10)	92.6(16)	54.8(12)	47.5(12)	23.5(9)	25.9(11)
05	41.3(10)	28.7(8)	47.1(10)	12.0(7)	13.5(8)	2.5(7)
O 6	47.9(10)	30.1(8)	25.9(8)	7.6(7)	5.3(7)	5.3(7)

Table S19. Anisotropic displacement parameters (Å² x 10³) for $5c^{-}NO_3^+H_2O$. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹+ ... + 2 h k a* b* U¹²].

Table S20. Torsion angles [°] for $5c^{-} \cdot NO_3^{+} \cdot H_2O$.

C(1)-C(2)-C(3)-N(3)	0.3(2)	N(3)-C(3)-N(5)-C(4)	179.5(2)
C(1)-C(2)-C(3)-N(5)	179.6(2)	N(3)-C(3)-N(5)-N(6)	-0.7(3)
C(1)-C(2)-N(4)-O(1)	-5.6(3)	N(4)-C(2)-C(3)-N(3)	174.2(2)
C(1)-C(2)-N(4)-O(2)	173.8(2)	N(4)-C(2)-C(3)-N(5)	-6.5(4)
C(1)-N(2)-N(3)-C(3)	0.2(2)	N(5)-C(3)-N(3)-N(2)	-179.75(16)
C(2)-C(1)-N(2)-N(3)	0.0(2)	N(5)-C(4)-N(7)-C(5)	-0.4(2)
C(2)-C(3)-N(3)-N(2)	-0.3(2)	N(6)-C(5)-C(6)-N(8)	168.3(2)
C(2)-C(3)-N(5)-C(4)	0.2(4)	N(6)-C(5)-C(6)-N(10)	-12.3(3)
C(2)-C(3)-N(5)-N(6)	180.0(2)	N(6)-C(5)-N(7)-C(4)	0.5(2)
C(3)-C(2)-N(4)-O(1)	-178.6(2)	N(7)-C(4)-N(5)-C(3)	180.00(19)
C(3)-C(2)-N(4)-O(2)	0.8(4)	N(7)-C(4)-N(5)-N(6)	0.2(2)

C(3)-N(5)-N(6)-C(5)	-179.74(17)	N(7)-C(5)-C(6)-N(8)	-12.4(3)
C(4)-N(5)-N(6)-C(5)	0.1(2)	N(7)-C(5)-C(6)-N(10)	167.04(19)
C(5)-C(6)-N(8)-N(9)	179.48(18)	N(7)-C(5)-N(6)-N(5)	-0.4(2)
C(5)-C(6)-N(10)-C(7)	-179.34(19)	N(8)-C(6)-N(10)-C(7)	0.1(2)
C(5)-C(6)-N(10)-N(11)	-4.3(3)	N(8)-C(6)-N(10)-N(11)	175.2(2)
C(6)-C(5)-N(6)-N(5)	179.04(18)	N(9)-C(7)-N(10)-C(6)	-0.2(2)
C(6)-C(5)-N(7)-C(4)	-178.93(19)	N(9)-C(7)-N(10)-N(11)	-175.96(18)
C(6)-N(8)-N(9)-C(7)	-0.1(2)	N(10)-C(6)-N(8)-N(9)	0.0(2)
N(1)-C(1)-C(2)-C(3)	178.7(2)	N(10)-C(7)-N(9)-N(8)	0.2(2)
N(1)-C(1)-C(2)-N(4)	4.1(4)	N(12)-C(7)-N(9)-N(8)	-179.4(2)
N(1)-C(1)-N(2)-N(3)	-178.98(18)	N(12)-C(7)-N(10)-C6)	179.5(2)
N(2)-C(1)-C(2)-C(3)	-0.2(2)	N(12)-C(7)-N(10)-N(11)	3.7(3)
N(2)-C(1)-C(2)-N(4)	-174.73(19)		

Table S21. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for $5c^{-1}NO_3^{+1}H_2O$.

Atom	X	У	Z	U(eq)
H(4)	6878.68	4360.76	5858.06	31
H(1A)	-167.96	-2721.1	5555.22	33
H(1B)	1158.01	-1409.44	6660.09	33
H(2)	315.53	-2132.27	3736.66	31
H(9)	9035.82	6893.67	1068.95	34
H(11A)	5959.24	1306.94	1099.63	37
H(11B)	4041.24	1552.44	902.81	37
H(12A)	7664.21	4724.27	-876	44
H(12B)	6300.9	2988.04	-871.12	44
H(6A)	1841.21	-580.48	1986.35	57
H(6B)	523.63	-540.94	1021.12	57

Fig. S1 ¹H NMR spectrum of **2a**.

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

Fig. S2 ¹³C NMR spectrum of **2a**.

Fig. S4 ¹³C NMR spectrum of **3a**.

Fig. S5 ¹H NMR spectrum of **4a**.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. S6 ¹³C NMR spectrum of **4a**.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

fl (ppm)

Fig. S10 ¹³C NMR spectrum of **2b**.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. S12 ¹³C NMR spectrum of **3b**.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. S14 ¹³C NMR spectrum of **4b**.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. S16 ¹³C NMR spectrum of **5b**.

Fig. S19 ¹H NMR spectrum of **3c**.

Fig. S21 ¹H NMR spectrum of **4c**.

Fig. S23 ¹H NMR spectrum of 5c.

Fig. S24 ¹³C NMR spectrum of **5c**.

5. The test of five-second (5s) delay exploding point

Fig. S25 The delay time of explosion of 4c at 360 ° C.

Fig. S26 The delay time of explosion of **4c** at 380 ° C.

Fig. S27 The delay time of explosion of **4c** at 390 ° C.

Fig. S28 The delay time of explosion of 4c at 395 ° C.

Fig. S29 The delay time of explosion of 4c at 400 ° C.

Fig. S30 The delay time of explosion of 5c at 360 ° C.

Fig. S31 The delay time of explosion of **5c** 380 ° C.

Fig. S32 The delay time of explosion of 5c at 390 ° C.

Fig. S33 The delay time of explosion of 5c 395 ° C.

Fig. S34 The delay time of explosion of 5c at 400 ° C.

6. DSC plots

Fig. S35 DSC plots of TTTN (2c), BTTN (3c), DTTN (4c) and ATTN (5c)

7. The device image of the 5 s bursting point

Fig. S36 (a) Aluminum tube for holding samples; (b) Heating module; (c) Diagram of the device before the sample was decomposed