Supplementary Data

Moisture-controlled Prussian white/CNT composite high energy

cathode for next-generation sodium-ion batteries

Jun Lee[†], Wangchae Jeong[†], Jaeryeol Baek[†], Yeongmin Kim, Yuri Choi, Vinod Mathew, Balaji Sambandam, Muhammad Hilmy Alfaruqi and Jaekook Kim^{*}

Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.

[†]These authors contributed equally

*Corresponding author. Tel: +82-62-530-1703. Fax: +82-62-530-1699.

E-mail: jaekook@chonnam.ac.kr (Jaekook Kim)

Fig. S1. XRD profile for PW samples with varying NaCl concentration, where other salts concentration are kept constant.

Fig. S2. Thermogravimetric plots obtained for PB, PB-CNT, PW and PW-CNT cathodes

Fig. S3. (a) XRD comparison PB-CNT with other samples, and (b) Comparative TG plots of PB-CNT, PB, PW and PW-CNT samples (low temperature range from room temperature to 250 $^{\circ}$ C.

Fig. S4. SEM and elemental mapping images recorded for the PW cathode prepared by the co-precipitation technique.

Fig. S5. SEM and elemental mapping images recorded for the PB cathode prepared by the coprecipitation technique.

Fig. S6. (a) Cyclic voltammetry curves for the PW-CNT and PW cathodes.

Fig. S7. Selected charge-discharge profiles of the (a) PW-CNT (b) PW and (c) PB cathodes with their (d) cycle-life profiles at 1 C.

Fig. S8. Selected charge-discharge profiles of the (a) PW-CNT (b) PW and (c) PB cathodes with their (d) cycle-life profiles at 2 C.

Fig. S9. Selected charge-discharge profiles of the (a) PW-CNT (b) PW and (c) PB cathodes with their (d) cycle-life profiles at 5 C.

Fig. S10. Selected charge-discharge profiles of the (a) PW-CNT (b) PW and (c) PB cathodes with their (d) cycle-life profiles at 10 C.

Fig. S11. Initial two electrochemical profiles of the full cell with the prepared PW-CNT cathode at 0.1 and 0.2 C rates, respectively to realize electrode activation.

Sample Name	Na	Mn	Fe
РВ	0.94	1.17	1.00
PW	1.92	0.95	1.00
PW-CNT	2.00	0.988	1.00

Table S1. ICP results for the prepared samples by the co-precipitation method. Fe is used as the reference element here.

Table S2. Comparative electrochemical performances of PBA-based cathodes in literature with that of the present PW-CNT cathode synthesized by the chelating-agent-assisted coprecipitation method.

Materials	Voltage range (V)	Best Capacity [mAh g ⁻¹]	Best rate capability [mAh g ⁻¹]	Best cycling	Full Cell	Anode	Best cycling	Re f
Na₂MnFe(CN) ₆ -CNT	2.0 - 4.2	140.9 at 0.1C	110.4 at 30 C	57% after 1000 cycles at 10C	0	Hard carbon	58% after 1500 cycles at 1C	This work
NaK-MnHCF@3DNC Na _{1.73} K _{0.13} Mn[Fe(CN) ₆] _{0.977} ·□ _{0.03}	2.0 – 4.2	220 at 20 mA g ⁻¹	110 at 500 mA g ⁻¹	85% after 500 cycles at 100 mA g ⁻¹	0	Hard carbon, 1.0-4.2V, 40mA g ⁻¹		[1]
C-MnHCF Na _{1.38} Mn[Fe(CN) ₆] _{0.92} □ _{0.08} · 2.57 H ₂ O	2.0 - 4.2	115 at 25 mA g ⁻¹	755/113 3.8 at 600m A g ⁻¹	70% after 500 cycles at 200 mA g ⁻¹	0	TiO ₂ anode, pre- sodiation	52.7% after 100 cycles at 200 mA g ⁻¹	[2]
NaMHCF-14-170°C Na _{1.94} Mn[Fe _{0.99} (CN) ₆] _{0.95} · □ _{0.05} · 1.92 H ₂ O	2.0 - 4.2	168.8 at 10 mA g ⁻¹	126.6 at 2000 mA g ⁻¹	87.6% after 100 cycles at 100 mA g ⁻¹	0	NaTi ₂ (PO ₄) ₃ (NTP)	84% after 500 cycles at 100 mA g ⁻¹	[3]
Na _{1.80} Mn[Fe(CN) ₆] _{0.98} □ _{0.02} · 1.76 H ₂ O	2.0 – 4.0 1C=150m A g ⁻¹	144.0 at 0.1C	86.6 at 10C	72.7% after 2100 cycles at 1 C	х	-	-	[4]
H-PBM Na _{1.92} Mn[Fe(CN) ₆] _{0.98} · 1.38 H ₂ O	2.0 – 4.0 1C=100m A g ⁻¹)	152.8 at 0.1C	110.3 at 10C	82% after 500 cycles at 1C	х	-	-	[5]
HQ-MnCoNi-PB Na _{1.59} Mn _{0.17} Co _{0.18} Ni _{0.04} Fe _{0.61} [Fe(CN) ₆] _{0.92}	2.0 – 4.0 (1C=170 mA g ⁻¹)	117 at 0.1C	70 at 9C	78.7% after 1500 cycles at 1C	х	-	-	[6]
MnHCF@PEDOT Na _{1.71} Mn[Fe(CN) ₆] _{0.94} · 1.66 H ₂ O	2.0 – 4.0 1C=150m A g ⁻¹	147.9 at 0.1C	90.1 at 20C	78.2% after 1000 cycles at 1C	х	-	-	[7]
Na _{1.20} Mn[Fe(CN) ₆] _{0.79} · 2.64H ₂ O	2.0 – 4.2 1C=150m A g ⁻¹	162.4 at 0.1C	109.2 at 5C	76% after 100 cycles at 1C	х	-	-	[8]

References for Table S2

- 1. Y. Mao, Y. Chen, J. Qin, C. Shi, E. Liu and N. Zhao, *Nano Energy*, 2019, **58**, 192-201.
- 2. Y. Tang, W. Li, P. Feng, M. Zhou, K. Wang, Y. Wang, K. Zaghib and K. Jiang, *Advanced Functional Materials*, 2020, **30**.
- 3. S. He, J. Zhao, X. Rong, C. Xu, Q. Zhang, X. Shen, X. Qi, Y. Li, X. Li, Y. Niu, X. Li, S. Han, L. Gu, H. Liu and Y.-S. Hu, *Chemical Engineering Journal*, 2022, **428**.
- 4. Z. Shen, S. Guo, C. Liu, Y. Sun, Z. Chen, J. Tu, S. Liu, J. Cheng, J. Xie, G. Cao and X. Zhao, *ACS Sustainable Chemistry & Engineering*, 2018, **6**, 16121-16129.
- 5. F. Peng, L. Yu, P. Gao, X.-Z. Liao, J. Wen, Y.-s. He, G. Tan, Y. Ren and Z.-F. Ma, *Journal of Materials Chemistry A*, 2019, **7**, 22248-22256.
- 6. B. Xie, P. Zuo, L. Wang, J. Wang, H. Huo, M. He, J. Shu, H. Li, S. Lou and G. Yin, *Nano Energy*, 2019, **61**, 201-210.
- 7. X. Wang, B. Wang, Y. Tang, B. B. Xu, C. Liang, M. Yan and Y. Jiang, *Journal of Materials Chemistry A*, 2020, **8**, 3222-3227.
- 8. Y. Xi and Y. Lu, *Chemical Engineering Journal*, 2021, **405**.