Electronic Supplementary Information

A Hydrophobic-superoleophilic 2D Zr-based Alkyne-rich Metal-Organic Framework for Oil/Water Separation and Solar-assisted Oil Evaporation

Qian-Ru Luo[§], Yuan-Hui Zhong[§], Lai-Hon Chung*, Zhixin Jiang, Qia-Chun Lin, Xin-

Ke Xu, Xinhe Ye, Wei-Ming Liao and Jun He*

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

* Corresponding author. E-mail: junhe@gdut.edu.cn, laihonchung@gdut.edu.cn [§]These authors contributed equally.

Table of contents

General procedure.	S4
Scheme S1. The synthetic scheme for H_2L1 .	S5
Experimental procedures.	S5-S11
¹ H and ¹³ C NMR spectra of the ligand H ₂ L1 and intermediates.	S6-S11
Fig. S1. The ¹ H NMR spectrum of SM3.	S6
Fig. S2. The ¹³ C NMR spectrum of SM3.	S 6
Fig. S3. The ¹ H NMR spectrum of SM4.	S 7
Fig. S4. The ¹³ C NMR spectrum of SM4.	S 7
Fig. S5. The ¹ H NMR spectrum of SM5.	S 8
Fig. S6. The ¹³ C NMR spectrum of SM5.	S 8
Fig. S7. The ¹ H NMR spectrum of Me_2L1 .	S9
Fig. S8. The 13 C NMR spectrum of Me ₂ L1.	S9
Fig. S9. The ¹ H NMR spectrum of H_2L1 .	S10
Fig. S10. The 13 C NMR spectrum of H ₂ L1.	S10
Fig. S11. A mass spectrum (ESI) of compound H_2L1 .	S11
Synthesis and activation of ZrL1.	S11
Structure simulation.	S11
Fig. S12. FT-IR spectra of ligand, as made sample and activated sample of ZrL1.	S12
Fig. S13. ¹ H NMR spectra of the filtrate of $ZrL1$ digested in HF/DMSO- d_6 and H_2L1	S12
in DMSO- d_6 .	
Fig. S14. Thermogravimetric analysis plots of activated $ZrL1$ in N_2 and air.	S12
Fig. S15. N ₂ sorption isotherm at 77 K and QSDFT analysis for ZrL1.	S13
Fig. S16. CO ₂ sorption isotherm at 175 K and QSDFT analysis for ZrL1.	S13
Fig. S17. PXRD patterns of ZrL1 before and after gas sorption measurement.	S13
Fig. S18. XPS spectra of ZrL1.	S14
Fig. S19. EDS elemental analysis results of ZrL1.	S14
Fig. S20. PXRD patterns of ZrL1 for chemical stability measurement.	S14
Fig. S21. Photographs of the droplets of saline water, acidic solution, alkaline solu-	S15
tion and dichloromethane on ZrL1 powder with contact angle values.	
Fig. S22. Photographs of droplet profiles on the surface of original PU Sponge with	S15
contact angle values.	
Fig. S23. FT-IR spectra of ZrL1, PU and ZrL1@PU.	S15
Table S1. Loading of ZrL1@PU.	S15
Fig. S24. Kubelka-Munk-transformed reflectance spectra for solid samples of PU,	S16
ZrL1 and ZrL1@PU.	
Fig. S25. The compression and detachment of organic droplets and water droplets	S16
on the surface of ZrL1@PU.	
Fig. S26. Photographs of the droplets of saline water, acidic solution, alkaline solu-	S16
tion on ZrL1@PU with contact angle values.	
Fig. S27. SEM images of original PU Sponge and ZrL1@PU samples with different	S17
loadings of ZrL1.	
Fig. S28. Organic solvent-absorption capacity of the ZrL1@PU.	S17

Fig. S29. Photographs of ZrL1@PU.	S18
Table S2. Absorption capacity, separation efficiency and flux densities of different	S18
kinds of oil.	
Fig. S30. The separation efficiency of ZrL1@PU with different loading in dichloro-	S19
methane/water mixture; dichloromethane/water mixture and dichloromethane/sea	
water mixture for 9 cycles of separation; ZrL1@PU in dichloromethane/water mix-	
ture as a function of operation time duration.	
Fig. S31. The dichloromethane-water mixture separation process.	S19
Fig. S32. The ethyl acetate-water mixture separation process.	S20
Fig. S33. Photothermal conversion behaviour of ZrL1.	S20
Fig. S34. Schematic diagram of photo-driven solvent evaporation experimental set-	S21
up.	
Fig. S35. Photo-driven distillation tests of ZrL1@PU.	S21
Fig. S36. FT-IR spectra and PXRD patterns of ZrL1 recovered from ZrL1@PU after	S22
five photothermal conversion cycles, oil/water separation and solvent evaporation	
experiment.	
Table S3. Comparisons of absorption capacities and separation efficiency of previ-	S22-S23
ously reported absorbents with ZrL1@PU.	
References.	S24

General procedure.

All the starting materials, reagents, and solvents were purchased from commercial sources (J&K, Zhengzhou Alfa and Acros) and used without additional purification. Elemental analysis was obtained with a Elementar Vario EL cube elemental analyser. Powder X-ray diffraction (PXRD) patterns were collected on a Rigaku Smart lab diffractometer with Cu K α radiation (λ = 1.5418 Å) at room temperature. The X-ray tube operated at a voltage of 40 kV and a current of 15 mA. FT-IR spectra (KBr pellet) in the range 400–4000 cm⁻¹ were recorded on a Thermo Fisher iS50R FT-IR spectrophotometer. Solution ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz Bruker superconducting magnet high-field NMR spectrometer at room temperature, with tetramethylsilane (TMS) as the internal standard. Chemical shifts (δ) are expressed in ppm relative to the residual solvent (e.g., chloroform ¹H: 7.26 ppm, ¹³C: 77.0 ppm) reference. Coupling constants are expressed in hertz (Hz). XPS spectra was carried out by a SACEnning Auger/X-ray Photoelectron Spectroscopy System (PHI 5802). Thermogravimetric analysis (TGA) was carried out on a Netzsch STA449F5 thermal analyser from 30 °C to 900 °C at a heating rate of 10 $^{\circ}$ C min⁻¹ under N₂ atmosphere. The sample was then held at vacuum until the analysis was run. The porosity and surface area analysis were performed using a Quantachrome Autosorb iQ gas sorption analyser. The sample was outgassed at 0.03 torr with a 5 °C/min ramp to 100 °C and held at this temperature for 12 hours. The sample was then held at vacuum until the analysis was run. Pawley refinement was carried out using Materials Studio Software. The morphology of the samples was investigated using scanning electron microscopy (SEM, SIGMA 500, ZEISS, Germany). All the water contact angle measurements were carried out by Hol-marc, HO-IOD-CAN-018 equipment. Diffuse reflection spectra were collected in the UV-visible near infra-red spectrophotometer with Integrating Sphere (SHIMADZU UV-3600 Plus).

Scheme S1. The synthetic scheme for H₂L1.

Experimental procedures.

Synthesis of 2-((trimethylsilyl)ethynyl)aniline (SM1), 2-ethynylaniline (SM2).

SM1 and **SM2** were prepared in accordance with previously reported procedure¹. The ¹H NMR and ¹³C NMR spectra were in agreement with the literature.

Synthesis of methyl 3-bromo-4-((trimethylsilyl)ethynyl)benzoate (SM3).

Methyl 3-bromo-4-iodobenzoate (5.0 g, 14.7 mmol), triphenylphosphine (384.65 mg, 1.5 mmol), bis(triphenylphosphine) palladium(II) chloride (308.8 mg, 0.43 mmol) and copper(I) iodide (83.8 mg, 0.43 mmol) were added to 25 mL pressure tube. Triethylamine (4 mL) and tetrahydrofuran (THF, 4 mL) each previously purged by bubbling N₂ gas for 5 minutes, were then transferred into the tube *via* a cannula. Under the N₂ atmosphere, trimethylsilylacetylene (TMSA, 1.73 g, 17.6 mmol) was added, sealed and reacted at 85 °C for 3 hours. After cooling to room temperature, the solvents were removed by a rotary evaporation and the residue was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate, 20:1, v/v) to yield compound **SM3** as yellow solid (4.33 g, 95% yield based on raw materials). ¹H NMR (400 MHz, CDCl₃): δ = 8.22 (s, 1H), 7.89 (d, 1H), 7.53 (d, 1H), 3.91 (s, 3H), 0.28 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ = 165.27, 133.40, 133.37, 130.92, 129.64, 127.90, 125.69, 103.33, 102.44, 52.51, -0.21.

Synthesis of methyl 3-((2-aminophenyl)ethynyl)-4-((trimethylsilyl)ethynyl)benzoate (SM4).

A mixture of compound **SM3** (2.0 g, 6.4 mmol), compound **SM2** (3.76 g, 32.1 mmol), bis(triphenylphosphine) palladium(II) chloride (135.3 mg, 0.2 mmol), and copper(I) iodide (36.7 mg, 0.2 mmol) were added to a 50-mL Schlenk tube and then the tube was connected to a vacuum manifold, evacuated and back-filled with N₂ gas for three times. Triethylamine (14 mL) and THF (7 mL), each previously purged by bubbling N₂ gas for 5 minutes, were then transferred into the tube *via* a cannula. The tube was screw-capped and the reaction solution was stirred at 85 °C under N₂ protection for 7 hours. After cooling to room temperature, the solvents were removed by a rotary evaporation and the residue was purified by silica gel column

chromatography (eluent: *n*-hexane/ethyl acetate, 10:1, v/v) to yield compound **SM4** as orange oily liquid (1.67 g, 74.7% yield based on compound **SM3**). ¹H NMR (400 MHz, CDCl₃): δ = 8.19 (s, 1H), 7.91 (d, 1H), 7.58 (d, 1H), 7.41 (d, 1H), 7.16 (t, 1H), 6.74 (d, 1H), 6.70 (t, 1H), 3.93 (s, 3H), 0.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ = 166.00, 148.30, 132.83, 132.66, 132.34, 130.35, 129.87, 129.01, 128.35, 126.34, 117.82, 114.31, 107.25, 103.50, 101.88, 92.76, 91.34, 52.44, 0.05.

Fig. S4. The ¹³C NMR spectrum of SM4 (CDCl₃, 100 MHz).

Synthesis of methyl 3-((2-aminophenyl)ethynyl)-4-ethynylbenzoate (SM5).

A 50-mL round-bottom flask was charged with compound **SM4** (1.5 g, 4.3 mmol), anhydrous K_2CO_3 (1.79 g, 12.9 mmol) and a magnetic stirring bar. CH_2Cl_2 (10 mL) and methanol (10 mL) were added into the flask, and the reaction mixture was stirred at room temperature overnight.

Then the solvent was removed on a rotary evaporator and the residue was then dissolved in CH₂Cl₂. The organic mixture was extracted with CH₂Cl₂ (3 × 50 mL), washed with distilled water (3 × 100 mL) to remove the K₂CO₃, dried over anhydrous Na₂SO₄ and the solvent was removed by rotary evaporation to obtain compound **SM5** as red oily liquid (861 mg, 94.1% yield based on **SM4**). ¹H NMR (400 MHz, CDCl₃): δ = 8.13 (s, 1H), 7.85 (d, 1H), 7.53 (d, 1H), 7.33 (d, 1H), 7.09 (t, 1H), 6.66 (d, 1H), 6.64 (t, 1H), 3.86 (s, 3H), 3.43 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 165.99, 148.52, 132.82, 132.49, 132.33, 130.51, 130.40, 128.45, 127.95, 127.01, 117.95, 114.42, 107.20, 92.55, 91.63, 83.70, 82.58, 52.69.

Synthesis of dimethyl 4,4'-(buta-1,3-diyne-1,4-diyl)bis(3-((2-aminophenyl)ethynyl)benzoate) (Me₂L1).

A 50-mL round-bottom flask was charged with compound **SM5** (800 mg, 2.9 mmol) and anhydrous copper(II) acetate (1.58 g, 8.72 mmol). 20 mL acetonitrile were added into the flask and reacted at 70 °C. At the end of the reaction, the green solid mixture was obtained by rotary steaming, washed with deionized water (3 × 200 mL) and extracted by CH₂Cl₂ (3 × 100 mL), dried over anhydrous Na₂SO₄ and the solvent was removed by rotary evaporation. The residue was purified by silica gel column chromatography (eluent: *n*-hexane/ethyl acetate, 4:1, v/v) to yield compound Me₂L1 as the orange solid (701.4 mg, 44% yield based on **SM5**). ¹H NMR (400 MHz, CDCl₃): δ = 8.22 (s, 2H), 7.95 (d, 2H), 7.65 (d, 2H), 7.39 (d, 2H), 7.05 (t, 2H), 6.64 (t, 2H), 6.52 (d, 2H), 3.95 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 165.72, 148.55, 133.13, 132.57, 132.22, 130.76, 130.55, 128.31, 127.62, 126.94, 117.73, 114.41, 106.45, 92.53, 92.28, 82.91, 79.32, 52.58.

Synthesis of 4,4'-(buta-1,3-diyne-1,4-diyl)bis(3-((2-aminophenyl)ethynyl)benzoic acid) (H₂L1).

In a round bottom flask, Me₂L1 (500 mg, 0.911 mmol) and KOH (18 mg, 18.22 mmol) were added. THF (10 mL) and deionized water (10 mL) were then added, and the reaction was stirred at 60°C for 24 hours. After cooling to room temperature, the resulting red solid mixture was obtained by removing the solvent using a rotary evaporator, and deionized water was added to the mixture, followed by the slow addition of HCl solution under stirring until the pH reached 2. The mixture was then filtered and washed with deionized water (3 × 200 mL), and finally vacuum dried. The product H₂L1 was obtained as the orange solid (388.6 mg, 82% yield based on Me₂L1). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.28 (s, 2H), 7.95 (d, 2H), 7.87 (d, 2H), 7.32 (d, 2H), 7.11 (t, 2H), 6.78 (d, 2H), 6.53 (t, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 166.06, 148.43, 133.46, 132.28, 132.00, 130.70, 128.61, 127.11, 125.66, 117.15, 115.06, 105.65, 92.81, 91.67, 82.48, 78.69.

Fig. S11. A mass spectrum (ESI) of compound H₂L1.

Synthesis and activation of ZrL1.

H₂L1 (3 mg, 5.77 mmol) and ZrCl₄ (1.6mg, 6.86 mmol) was loaded into a glass tube. Then HCOOH (24 μ L) and *N*,*N*-dimethylformamide (DMF, 300 μ L) mixed solution was added and the tube was sealed with an oxyhydrogen flame. The glass tube was placed in an oven at 90 °C for 48 hours, during which crystalline solid slowly formed. After the sealed tube was heated for 48 hours, it was cooled to room temperature over 4 hours. The yellow crystalline solid were collected and washed with DMF (15 mL) and acetone (15 mL) and air-dried to obtain yellow ZrL1 crystalline solid. For elemental analysis, the ZrL1 (50 mg) were activated *via* Soxhlet extraction with acetonitrile for three days, and then placed in vacuum at 80 °C for 10 hours. Elemental analysis found C (44.65%), H (3.17%) and N (2.78%) for ZrL1, this analysis fits the formula to be Zr₆O₄(OH)₄(HCOO)₇(C₃₄H₁₈N₂O₄)_{2.5}(H₂O)₁₁(*M*_w 2488.97), which gives a calculated profile of C (44.40%), H (3.16%) and N (2.81%).

Structure simulation.

The structure model of ZrL1 was constructed by the secondary building block of 6-connected $[Zr_4O_4(OH)_4]$ and 2-connected ditopic L1²⁻ in reference to MOFs bearing hxl topology.²⁻⁵ Using Materials Studio (v6.1.0) suit of programs by Accelrys, the model of ZrL1 was generated with $P\overline{3}$ space group (No. 147) before replacing the linker (including the cell parameters and atomic positions) and subsequently Geometry Optimization by Forcite Calculation was carried out. To modify the lattice parameters to match the observed PXRD, Pawley refinement procedure was used, leading to trigonal lattice with a = b = 23.938 Å, c = 9.537 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$. Instrumental peak broadening parameters and additional profile parameters, background and crystallite size broadening were also used in the refinement to obtain the resultant structural model of ZrL1. The R_{wp} and R_p are equal to 4.54% and 2.80%, respectively (Fig. 2c).

Fig. S12. FT-IR spectra of ligand, as made sample of ZrL1 and activated sample of ZrL1.

Fig. S13. ¹H NMR spectra of: (a) the filtrate of ZrL1 digested in HF/DMSO- d_6 ; (b) H₂L1 in DMSO- d_6 .

Fig. S14. Thermogravimetric analysis (TGA) plots of activated ZrL1 (a) in N₂ and (b) in air.

Fig. S15. (a) N_2 sorption isotherm at 77 K and (b) BET plot for activated ZrL1 (outgassed at 100 °C under vacuum for 12 hours). N_2 sorption isotherm of ZrL1 reveals a type-II gas sorption isotherm and QSDFT analysis gives BET surface area of 27.065 m² g⁻¹.

Fig. S16. (a) CO₂ sorption isotherm at 175 K and (b) BET plot for activated ZrL1 (outgassed at 100 °C under vacuum for 12 hours). CO₂ sorption isotherm of ZrL1 reveals a type-II gas sorption isotherm and QSDFT analysis gives BET surface area of 22.908 m² g⁻¹.

Fig. S17. PXRD patterns (Cu K α , $\lambda = 1.5418$ Å) of ZrL1 before and after gas sorption measurement.

Fig. S18. XPS spectra of ZrL1: (a) Full region; (b) Zr 3*d* region; (c) N 1*s* region; (d) O 1*s* region. The powder samples were ground and pressed to form a thin pellet ($\sim 0.5 \times 0.5$ cm²).

150—			分布图总数谱图
	Element	Weight %	Atomic %
- 100—	СК	56.97	77.03
	NK	4.39	5.09
- - 50-	ОК	13.14	13.34
	ZrL	25.50	4.54
		Z	- Z -

Fig. S19. EDS elemental analysis results of ZrL1.

Fig. S20. PXRD patterns (Cu K α , $\lambda = 1.5418$ Å) of as made ZrL1 sample immersed in aqueous solutions of (a) pH = 1 and 3 (prepared by HCl solution), 10 and 13 (prepared by NaOH solution); (b, c) different solvents at room temperature for 24 hours.

Fig. S21. Photographs of the droplets of saline water (3.5 wt.% NaCl, pH = 7), acidic solution (0.01 M HCl, pH = 2), alkaline solution (0.01 M NaOH, pH = 12) and dichloromethane on ZrL1 powder with contact angle values.

Fig. S22. Digital photographs of droplet profiles on the surface of original PU sponge with contact angle values.

Fig. S23. FT-IR spectra of ZrL1, PU and ZrL1@PU.

Table S1. Loading of ZrL1@PU.

ZrL1	$w_{0}\left(\mathrm{g} ight)$	$w_{l}(\mathbf{g})$	Loading content (wt.%)
10 mg	0.0798	0.1048	20.6
20 mg	0.0872	0.1157	31.1
30 mg	0.0863	0.1305	48.0

Fig. S24. (a, b) Kubelka-Munk-transformed reflectance spectra for solid samples of PU, ZrL1, ZrL1@PU.

Fig. S25. The compression and detachment of (a) organic droplets and (b) water droplets on the surface of ZrL1@PU.

Fig. S26. Photographs of the droplets of saline water (3.5 wt.% NaCl, pH = 7), acidic solution (0.01 M HCl, pH = 2), alkaline solution (0.01 M NaOH, pH = 12) on ZrL1@PU with contact angle values.

Fig. S27. SEM images of original PU Sponge (a) and ZrL1@PU samples with different loadings of ZrL1 (10.0, 20.0 and 30.0 mg loadings for b, c and d).

Fig. S28. Organic solvent-absorption capacities of the ZrL1@PU (the errors estimated to vary from $\pm 1.4\%$ to $\pm 3.2\%$).

Fig. S29. (a, b) Photographs of ZrL1@PU in water; (c) Photograph of ZrL1 powder in water and oil phase; Photographs showing the absorption of ethyl acetate (d) and dichloromethane (e) from water by ZrL1@PU.

Oil Types	Absorption capacity (g/g)	Separation efficiency (%)	Flux (L m ^{-2} h ^{-1})
Chloroform	61.09	99.3	5340
Acetone	43.43	96.2	3956
Tetrachloromethane	56.78	98.0	4611
Ethyl acetate	44.03	96.7	4420
Toluene	46.41	97.7	4570
Dichloromethane	66.19	98.8	4788

Table S2. Absorption capacity, separation efficiency and flux of different kinds of oil.

Fig. S30. The separation efficiency of (a) ZrL1@PU with different loadings in dichloromethane/water mixture; (b) dichloromethane/pure water or dichloromethane/sea water mixture for 9 cycles of separation; (c) ZrL1@PU in dichloromethane/water mixture as a function of operation time duration (the errors estimated to vary from $\pm 1.6\%$ to $\pm 4.4\%$).

Fig. S31. The dichloromethane-water mixture separation process.

Fig. S32. The ethyl acetate-water mixture separation process.

Fig. S33. (a) IR thermal images of ZrL1 under xenon lamp (1.0 kW m⁻²); (b) Photothermal conversion behaviour of ZrL1 (different amounts) under one-sun irradiation within eight minutes; (c) Anti-photobleaching property of ZrL1 during five cycles of heating–cooling; (d) Photothermal conversion behaviour of ZrL1 under different light intensities (1.0, 2.0, 3.0 and 5.0 kW m⁻²).

Fig. S34. Schematic diagram of photo-driven solvent evaporation experimental set-up.

Fig. S35. Photo-driven distillation tests of ZrL1@PU. Weight variations of PU or ZrL1@PU saturated by dichloromethane, ethyl acetate, acetone and toluene with/without the light illumination at a power density of 1.0 kW m^{-2} .

Fig. S36. (a) FT-IR spectra and (b) PXRD patterns of ZrL1 recovered from ZrL1@PU by ultrasonication after five photothermal conversion cycles, oil/water separation and 20 cycles of solvent evaporation experiment.

S. No .	Absorbents	Absorption substances	Absorption ca- pacity (g/g)	Separation efficiency (%)	Ref.
		chloroform, acetone, di-			
1	ZrL1@PU	ethyl ether, dichloro- methane, toluene, tetra-	43.43-66.19	96.2–99.3	This work
		chloromethane, n-hexane			
2	SEnS	crude oil	22.59	90–99	<i>Ref.</i> 6
		diesel oil, petrol oil, kero-			
		sene, crude oil, dichloro-		95–99	<i>Ref.</i> 7
3	SHMOF-PP	methane, chloroform, car-	28.28-38.93		
	bon tetrachloride, ethyl				
		acetate, hexane, toluene			
4	cotton fibre modified	diesel oil, lubrication oil,	25.61.57.01	08.5	Daf 8
4	via the solgel method	he solgel method crude oil, peanut oil	25.01-57.01	98.5	Kej. o
5	modified jute fibre via	crude oil, diesel oil, lubri-	7 41-10 29	_	Raf Q
5	the sol-gel method	cating oil, peanut oil	/.41-10.29	-	Kej. 9
		pump oil, edible oil, di-			
		chloromethane, toluene,	28.5-68.7	>95	<i>Ref.</i> 10
6	PDMS/CB@PU	ethyl acetate, hexameth-			
	T DIVIS/CD(0) C	ylene, <i>n</i> -octane, ethyl al-			
	cohol, petroleum ether,				
		isopropanol			
	polystyrene branched	hexane, heptane, nonane.			
7	9-octadecenoic acid	decane hexadecane	11.00-27.00	-	<i>Ref.</i> 11
grafted graphene	decane, nexadecane				

 Table S3. Comparisons of absorption capacities (in g/g) and separation efficiency (%) of some absorbents with ZrL1@PU

8	MOF-PU sponge	<i>n</i> -hexane, paraffin, etha- nol, edible oil, DMF, car- bon tetrachloride	29.00-56.00	>96	<i>Ref.</i> 12
9	UiO-66-F4@rGO/MS	<i>n</i> -hexane, isooctane, di- chloromethane, 1,3,5- tri- methylbenzene, silicone oil diesel oil light diesel oil crude oil	26.00-61.00	99.73	<i>Ref.</i> 13
10	MOF@RGO compo- sites	chloroform, <i>n</i> -hexane, sil- icone oil, bump oil, bean oil, toluene, acetone, bu-	14.00–37.00	5080	<i>Ref.</i> 14
11	MOFs-copper foam	soybean oil, <i>n</i> -hexane, isooctane, gasoline, di- chloromethane, chloro- form	1.50–3.50	>96	<i>Ref.</i> 15
12	Macroporous silicone sponges	crude oil, sunflower oil, kerosene, diesel, alcohol, acetic acid, chloroform, acetone, diethyl ether, <i>n</i> - hexane, isooctane, di- chloromethane	9.70–27.00	>99	<i>Ref.</i> 16
13	PVDF/SiO2@GO nan- ofibrous aerogel	<i>n</i> -Hexane, kerosene, tolu- ene, cooking oil, di- chloromethane, chloro- form	129–264	>99	<i>Ref.</i> 17
14	ZIF-8-PDA-Ag@MS	<i>n</i> -hexane, cyclohexane, dodecane, acetone, tolu- ene, tetrahydrofuran, chloroform, chloroben- zene, diesel oil, pump oil,	85.45–168.95	>94	<i>Ref.</i> 18
15	SH-UiO-66@CFs	motor oil, and com oil. motor oil, silicone oil, gasoline, kerosene, tolu- ene, hexane, ethyl ace- tate, carbon tetrachloride, chloroform, dichloro- methane	27.14–49.27	95–98	<i>Ref.</i> 19

References.

- Q. Xiao, M. Lu, Y. Deng, J.-X. Jian, Q.-X. Tong and J.-J. Zhong, Org. Lett., 2021, 23, 9303–9308.
- J. Jia, A. J. Blake, N, R. Champness, P. Hubberstey, C. Wilson and M. Schröder, *Inorg. Chem.*, 2008, 47, 8652–8664.
- H. L. Nguyen, F. Gándara, H. Furukawa, T. L. H. Doan, K. E. Cordova and O. M. Yaghi, J. Am. Chem. Soc., 2016, 138, 4330–4333.
- V. Sharma, D. De, S. Pal, P. Saha and P. K. Bharadwaj, *Inorg. Chem.*, 2017, 56, 8847– 8855.
- W. Lin, E. Ning, L. Yang, Y. Rao, S. Peng and Q. Li, *Inorg. Chem.*, 2021, 60, 11756– 11763.
- P. Cherukupally, W. Sun, A. P. Y. Wong, D. R. Williams, G. A. Ozin, A. M. Bilton and C. B. Park, *Nat. Sustain.*, 2020, 3, 136–143.
- C. Gogoi, A. Rana, S. Ghosh, R. Fopase, L. M. Pandey and S. Biswas, ACS Appl. Nano Mater., 2022, 5, 10003–10014.
- 8. N. Lv, X. Wang, S. Peng, L. Luo and R. Zhou, RSC Adv., 2018, 8, 30257–30264.
- 9. N. Lv, X. Wang, S. Peng, H. Zhang and L. Luo, *Int. J. Environ. Res. Public Health*, 2018, **15**, 969.
- J. Chen, M. Sun, Y. Ni, T. Zhu, J. Haung, X. Li and Y. Lai, *J. Hazard. Mater.*, 2023, 445, 130541.
- F. I. Alghunaimi, D. J. Alsaeed, A. M. Harith and T. A. Saleh, *J. Clean. Prod.*, 2019, 233, 946–953.
- 12. Z. He, H. Wu, Z. Shi, X. Duan, S. Ma, J. Chen, Z. Kong, A. Chen, Y. Sun and X. Liu, *Colloids Surf. A: Physicochem. Eng. Asp.*, 2022, **648**, 129142.
- Y. Zhan, S. He, J. Hu, S. Zhao, G. Zeng, M. Zhou, G. Zhang and A. Sengupta, J. *Hazard. Mater.*, 2020, 388, 121752.
- 14. J. Gu, H. Fan, C. Li, J. Caro and H. Meng, *Angew. Chem. Int. Ed.*, 2019, **58**, 5297–5301.
- 15. J. Du, C. Zhang, H. Pu, Y. Li, S. Jin, L. Tan, C. Zhou and L. Dong, *Colloids Surf. A: Physicochem. Eng. Asp.*, 2019, **573**, 222–229.
- J. Cao, D. Wang, P. An, J. Zhang and S. Feng, J. Mater. Chem. A, 2018, 6,18025– 18030.
- X. Wang, Z. Liu, X. Liu, Y. Su, J. Wang, T. Fan, X. Ning, S. Ramakrishn and Y.-Z. Long, *Carbon*, 2022, **193**, 77–87.
- Y. Zhang, S. Hou, H. Song, G. Qin, P. Li, K. Zhang, T. Li, L. Han, W. Liu and S. Ji, J. *Hazard. Mater.*, 2023, 451, 131064.
- R. Dalapati, S. Nandi, C. Gogoi, A. Shome and S. Biswas, ACS Appl. Mater. Interfaces, 2021, 13, 8563–8573.