Supporting information

The Activity Origin of C-N-Cu Electrocatalysts for Ethanol Formation in CO₂ Reduction Reaction under Working Condition

Xiaotao Zhang,^a Jiao Chen,^a Guoying Gao,^{*b} Hongyan Wang,^a Yongliang Tang,^a Bai Sun,^{*c} Yuxiang Ni,^a Yuanzheng Chen,^{*a} and Yuan Ping Feng^d

^a School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China. E-mail: <u>cyz@switu.edu.cn</u> ^b Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei066004, China. E-mail: <u>gaoguoying@ysu.edu.dn</u>

^c Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. E-mail: <u>baisun@xitu.edu.cn</u>

^d Department of Physics and Centre for Advanced Two-Dimensional Materials, National University of Singapore, Singapore 117551.

Contents

Computational details.	PageS2-S3
Table S1-S3 Calculated E, ZPE and TS for reactants.	Page S4
Figure S1 C_N substrates with two hydrogens adsorbed.	Page S5
Figure S2The configurations of Cu _N in the air.	Page S6
Figure S3econd-order difference of total energies of Cu _N cluster.	Page S7
Figure S4 Energy-potential curve for C-N-Cu ₃ and C-N-Cu ₅ .	Page S8
Figure S5 Free energy of CO2 reduction under specific potentials.	Page S9
Figure S6 hexahedral structure of C-N-Cu ₅ .	Page S10
Figure S7 Bader Change analysis of C-N-Cu ₃ and C-N-Cu ₅ .	Page S11
Atomic coordinates	Page S12-S15

Corresponding Authors:

Yuanzheng Chen Email: <u>cyz@swjtu.edu.cn</u> Guoying Gao Email: <u>gaoguoying@ysu.edu.cn</u> Bai Sun Email: <u>baisun@xjtu.edu.cn</u>

1.Computational Details

1.1 Free energy calculations

The Gibbs free energy change (ΔG) is calculated as $\Delta G = \Delta E + \Delta ZPE - T\Delta S$. ΔE is the DFT energy difference, and ΔZPE and T ΔS are the change of zero point energies and entropy calculated by the following equations:

$$ZPE = \frac{1}{2} \sum_{i} hv_i$$
$$S_{vib}(T) = R \sum_{i} \left\{ \frac{hv_i}{kT} \frac{e^{\frac{hv_i}{kT}}}{1 - e^{\frac{hv_i}{kT}}} - \ln\left(1 - e^{\frac{hv_i}{kT}}\right) \right\}$$

The T is set to be 298.15K. The calculated data of reactants are listed in Table.

1.2 Binding energy

The binding energy expressed as

$$E_{\text{binding}}(Cu_N) = E(C-N-Cu_N) - E(C-N \text{ substrate}) - E(Cu_N)$$

where right three terms represent total energy of C-N-Cu_N, clean C-N substrate and pure Cu_N cluster. The more negative the value, the easier the corresponding structure can be combined with the substrate.

1.3 Second-order difference of the total energies

The second-order difference of the total energies is used to evaluate the stability of the cluster structure. Its value is expressed as

$$\Delta^2 E = E \left(Cu_{N+1} \right) + E \left(Cu_{N-1} \right) - 2E \left(Cu_N \right)$$

. And the structure corresponding to the maximum value is considered stable.

1.4 D-band center

To analyze the adsorption ability of catalysts quantitatively, the d-band center are calculated as follows

$$\varepsilon_{d} = \frac{\int_{-\infty}^{\infty} \varepsilon \rho_{d} d\varepsilon}{\int_{-\infty}^{\infty} \rho_{d} d\varepsilon}$$

where ϵ represents energy and ρ_d is the d partial electronic density of states. Take the value as an indicator, the adsorption capacity is proportional to the value of d-band-center.

1.5 CO₂ reduction to CO

The Conversion of CO₂ to CO is a two-proton-coupled electron transfer process involving intermediates (*CO₂, *COOH and *CO) where * represents catalysts. The elementary reaction can be expressed as followed:

$$* + CO_2 \rightarrow *CO_2$$

$$*CO_2 + H^+ + e^- \rightarrow *COOH$$

$$*COOH + H^+ + e^- \rightarrow *CO + H_2O$$

$$*CO \rightarrow * + CO$$

The free energy calculations based on CHE model can be written as:

$$\begin{split} &\Delta G_1 = E_{*CO_2} + ZPE_{*CO_2} - TS_{*CO_2} - (E_{(* + CO_2)} + ZPE_{(* + CO_2)} - TS_{(* + CO_2)}) \\ &\Delta G_2 = E_{*COOH} + ZPE_{*COOH} - TS_{*COOH} - (E_{CO_2} + ZPE_{CO_2} - TS_{CO_2} + \frac{E_{H_2}}{2} + \frac{ZPE_{H_2}}{2} - \frac{TS_{H_2}}{2}) \\ &\Delta G_3 = E_{*CO} + ZPE_{CO} - TS_{*CO} + E_{H_2O} + ZPE_{H_2O} - TS_{H_2O} - (E_{(*COOH)} + ZPE_{(*COOH)} - TS_{(*COOH)} + \frac{E_{H_2}}{2} + \frac{ZPE_{H_2}}{2} - \frac{TS_{H_2}}{2}) \\ &\Delta G_4 = E_{(* + CO)} + ZPE_{(* + CO)} - TS_{(* + CO)} - (E_{*CO} + ZPE_{*CO} - TS_{*CO}) \end{split}$$

S3

		ZPE	TS	
C-N-Cu ₃	*CO ₂ *COOH *CO	0.28 0.60 0.18	0.24 0.23 0.21	
C-N-Cu5	*CO ₂ *COOH *CO	0.29 0.59 0.19	0.24 0.15 0.20	

Table S1. Calculated ZPE and TS for $\mathrm{CO}_2 RR$ to CO on C-N-Cu_3 and C-N-Cu_5

Table S2. Calculated ZPE and TS for CO₂RR to ethanol on C-N-Cu₅

	ZPE	TS	
*COCO	0.37	0.35	
*OCOCH	0.62	0.40	
*COCHO	0.70	0.29	
*CHOCHO	0.87	0.44	
*OCHOCH	1.03	0.27	
*OCHOCH ₂	1.29	0.33	
*OCHOHCH ₂	1.61	0.32	
*OCHCH ₂	1.20	0.23	
*OCHCH ₃	1.49	0.31	
*OCH ₂ CH ₃	1.82	0.34	

Table S3. Calculated E_{DFT}, ZPE, TS for molecular in CO₂RR

	E _{DFT}	ZPE	TS	
H ₂	-6.77	0.30	0.40	
H ₂ O	-14.23	0.58	0.67	
CO_2	-23.00	0.31	0.67	
СО	-14.80	0.14	0.62	
C ₂ H ₅ OH	-46.88	2.11	0.36	

Figure S1. C_N substrate with two hydrogens adsorbed: a) diagonal hydrogen atoms; b) adjacent hydrogen atoms

Figure S2. The configurations of Cu_N in the air.

Figure S3. Second-order difference of total energies of Cu_N cluster in the air.

Figure S4. Fitted Energy-potential curve for (a) C-N-Cu₃ and (b) C-N-Cu₅ with constant potential method.

Figure S5. The free energy step diagram of CO₂ reduction to CO under specific potentials.

Figure S6. The stable hexahedral structure of C-N-Cu₅ which is optimized under non-aqueous environment.

Figure S7. The valance electron of (a) Cu₃ and (b) Cu₅ calculated by Bader Change analysis. The copper atoms at the bottom of the C-N-Cu₃ and C-N-Cu₅ molecules that are interacting with nitrogen lose 0.66e and 0.62e, respectively. The electrons of the upmiddle copper atom in C-N-Cu₅ are losing 0.08e, whilst the electrons of the other two coppers at the angle of C-N-Cu₅ and the top copper in C-N-Cu₃ stay constant.

The atomic coordinates

(1) Cu2			
0.5868773130720107	0.5739136741989520	0.6411131991654587	Cu1
0.4797726599279932	0.5171163268010409	0.6782767998345361	Cu2
(2) Cu3			
0.4765529828924561	0.5153189683147229	0.6793395461257844	Cu1
0.5485435924203922	0.4514785388246503	0.6029010363062729	Cu2
0.4341434136871556	0.3891425368606200	0.6431394085679356	Cu3
(3) Cu4			
0.5905745141101002	0.5758749142849661	0.6398360314395012	Cul
0.4760851347895466	0.5151606498228131	0.6795522594292216	Cu2
0.5484963717255620	0.4510009480944903	0.6026865302571841	Cu3
0.4346639853747958	0.3897834927977299	0.6431451768740896	Cu4
(4) Cu4			
0.5905745141101002	0.5758749142849661	0.6398360314395012	Cu1
0.4760851347895466	0.5151606498228131	0.6795522594292216	Cu2
0.5484963717255620	0.4510009480944903	0.6026865302571841	Cu3
0.4346639853747958	0.3897834927977299	0.6431451768740896	Cu4
(5) Cu5			
0.5229067505353442	0.5691594356362142	0.6025722924641930	Cu1
0.4975631714627709	0.5030272610178949	0.7052637632322465	Cu2
0.4687153352258888	0.4408944043473386	0.6013108595565002	Cu3
0.5491885021544856	0.6290384973715287	0.7059125326140649	Cu4
0.4439062266215122	0.3779504476270177	0.7036505221329959	Cu5
(6) Cu6			
0.5164201387324489	0.5698754811208806	0.5984686142468754	Cul
0.4935945099241920	0.5031587917263848	0.7025141915498631	Cu2
0.4711373546443335	0.4408352193712413	0.6003956699786841	Cu3
0.5407887115532555	0.6357662601141921	0.7026450106561251	Cu4
0.5171092086946455	0.5693689596634373	0.8026842219504147	Cu5
0.5625801074511160	0.6985352430038527	0.6005722846180415	Cu6
(7) Cu7			
0.5022112087416890	0.4910019038577218	0.5120480866703774	Cu1
0.5073726002968948	0.6107159163164543	0.5772702936515977	Cu2
0.6181898243299987	0.5242682156002018	0.5734070006793697	Cu3
0.5715674775986069	0.3903084596087101	0.5727302822996468	Cu4
0.4320605703070104	0.3938785187701778	0.5763148706633018	Cu5
0.3924309492961262	0.5300016472600704	0.5791585289221250	Cu6
0.5065273214296722	0.4886053585866618	0.6394909421135926	Cu6
(8) C-N-Cu			
0.000000008293323	0.0829534563774832	0.4999999903629910	C1
0.0714688928622983	0.2077540294978927	0.4999999808244401	C2
0.0000000005026329	0.1664338753720708	0.4999999807046589	C3
0.0716273048955180	0.0417753558335255	0.500000061218159	C4

0.1431945021568964	0.0829585362819582	0.5000000125077487	C5
0.2143433456634119	0.2081455652321550	0.500000081050336	C6
0.1429980031666078	0.1665786792612668	0.5000000019830164	C7
0.2149180158367666	0.0418706361920544	0.5000000281991703	C8
0.2864131666313490	0.0835517034650744	0.5000000382795093	C9
0.3574738316822488	0.2098811196979171	0.5000000328971611	C10
0.2862641967868438	0.1675390917874567	0.5000000392056393	C11
0.3579605622191561	0.0422375509568894	0.5000000260861205	C12
0.4291297884625572	0.0846692297220338	0.4999999991504139	C13
0.4999999996682954	0.2129838649122604	0.4999999957500027	C14
0.4292284474715979	0.1691733165503916	0.500000038048836	C15
0.4999999995394220	0.0421031443359945	0.4999999800414311	C16
0.5708702090814053	0.0846692321936784	0.4999999707554308	C17
0.6425261601649971	0.2098811248871727	0.5000000219900724	C18
0.5707715494479437	0.1691733173748522	0.4999999830841470	C19
0.6420394358049943	0.0422375574816190	0.4999999806208990	C20
0.7135868301233108	0.0835517051658161	0.4999999900314170	C21
0.7856566510932647	0.2081455698741295	0.500000068116084	C22
0.7137357983200815	0.1675390946517802	0.5000000110483510	C23
0.7850819821129803	0.0418706408049724	0.4999999815339481	C24
0.8568054923899936	0.0829585402996738	0.4999999821620953	C25
0.9285311054747548	0.2077540288474731	0.4999999784017421	C26
0.8570019964737369	0.1665786853547667	0.4999999885055013	C27
0.9283726950189829	0.0417753538734190	0.4999999877524230	C28
0.000000037323177	0.3328358278102447	0.4999999758666445	C29
0.0707111652154517	0.4581140903266497	0.500000014963404	C30
0.0000000009172124	0.4163418727606953	0.4999999836017215	C31
0.0712096138553000	0.2913991085130149	0.4999999744372799	C32
0.1421188996311543	0.3328625924109047	0.4999999787478009	C33
0.2117968514254126	0.4584244510995482	0.5000000109098984	C34
0.1414621120819288	0.4165210872679884	0.500000035864161	C35
0.2135671443956721	0.2915718192432336	0.4999999854227893	C36
0.2843190991105964	0.3334696605820525	0.4999999968708603	C37
0.3528768077851341	0.4576916678086575	0.4999999904568306	C38
0.2826176333341912	0.4169522915744432	0.5000000059764956	C39
0.3565831294764603	0.2939525205721978	0.5000000202866072	C40
0.4267543111197138	0.3390222563766651	0.5000000219061501	C41
0.4999999972404014	0.2982362820638576	0.5000000631633839	C42
0.5732456862034040	0.3390222565609103	0.5000000685808403	C43
0.6471231940408658	0.4576916681338516	0.5000000164221878	C44
0.6434168658882358	0.2939525285239339	0.5000000583709118	C45
0.7156808973220894	0.3334696701078431	0.5000000415529288	C46
0.7882031528636471	0.4584244556322498	0.4999999876552558	C47
0.7173823650855099	0.4169522980448849	0.5000000119735725	C48

0.7864328482156862	0.2915718241345320	0.5000000183416714	C49
0.8578810904837720	0.3328625960678291	0.4999999920328735	C50
0.9292888295566488	0.4581140915665364	0.4999999809982660	C51
0.8585378875001716	0.4165210913022558	0.4999999802825583	C52
0.9287903808426371	0.2913991109780428	0.4999999804847446	C53
0.000000016034271	0.5836581291178170	0.5000000150938606	C54
0.0712096207592485	0.7086008912458450	0.5000000162651648	C55
0.000000039944121	0.6671641727438542	0.5000000223375825	C56
0.0707111685470665	0.5418859109020676	0.5000000156456662	C57
0.1414621147964274	0.5834789108916620	0.5000000136580068	C58
0.2135671500068722	0.7084281793810422	0.4999999813282234	C59
0.1421189045433635	0.6671374043504936	0.500000039295899	C60
0.2117968459658081	0.5415755463281433	0.500000053455684	C61
0.2826176409545962	0.5830477014062563	0.4999999854264577	C62
0.3565831399890556	0.7060474665230253	0.4999999409833622	C63
0.2843190996576802	0.6665303271478339	0.4999999612119191	C64
0.3528768095322685	0.5423083299460996	0.4999999925770994	C65
0.500000012948830	0.7017637148244151	0.4999999381898406	C66
0.4267543229142688	0.6609777359758044	0.4999999495722314	C67
0.6434168640296876	0.7060474772054771	0.4999999751238829	C68
0.5732456841336141	0.6609777441862872	0.4999999754526564	C69
0.6471231862916016	0.5423083320813943	0.4999999943216226	C70
0.7173823546728667	0.5830477042520714	0.4999999813401426	C71
0.7864328538877747	0.7084281767079562	0.5000000156994889	C72
0.7156809006852767	0.6665303304067528	0.4999999982244679	C73
0.7882031433564524	0.5415755531597084	0.4999999810256996	C74
0.8585378811348532	0.5834789069436177	0.4999999935040209	C75
0.9287903843966246	0.7086008938768817	0.5000000240259314	C76
0.8578811007457444	0.6671374072431432	0.5000000198045041	C77
0.9292888324512016	0.5418859126378534	0.4999999977108385	C78
0.000000022816374	0.8335661247704294	0.5000000182744205	C79
0.0716273079349139	0.9582246442193189	0.5000000124689513	C80
0.0000000005506654	0.9170465442667216	0.5000000106190641	C81
0.0714688954003845	0.7922459707519856	0.5000000192104156	C82
0.1429980082510602	0.8334213180472789	0.5000000091470141	C83
0.2149180191607689	0.9581293635134291	0.5000000175993605	C84
0.1431945091828118	0.9170414593818450	0.5000000161893885	C85
0.2143433464792787	0.7918544301146697	0.4999999912972451	C86
0.2862642029854097	0.8324609084855129	0.4999999836650060	C87
0.3579605665792647	0.9577624457120760	0.5000000210695057	C88
0.2864131688341351	0.9164482917726821	0.5000000097398271	C89
0.3574738398908459	0.7901188705723171	0.4999999697054797	C90
0.4292284525291348	0.8308266845740614	0.500000144822772	C91
0.500000000004720	0.9578968571785781	0.5000000207606793	C92

0.4291297867526975	0.9153307720226441	0.5000000304028178	C93
0.500000006464245	0.7870161370537185	0.500000021469445	C94
0.5707715522107629	0.8308266864172289	0.4999999946189777	C95
0.6420394332034479	0.9577624519709339	0.4999999762889195	C96
0.5708702129692123	0.9153307732957445	0.500000031200500	C97
0.6425261668620136	0.7901188776813736	0.4999999634305076	C98
0.7137357997221877	0.8324609123727165	0.4999999613668908	C99
0.7850819844173580	0.9581293652089095	0.4999999709407893	C100
0.7135868335983400	0.9164482932020516	0.4999999631130584	C101
0.7856566569250624	0.7918544314681004	0.4999999942183644	C102
0.8570019938833549	0.8334213228554982	0.4999999993087236	C103
0.9283726944578681	0.9582246441521529	0.4999999947526725	C104
0.8568054970131243	0.9170414605119603	0.4999999872907185	C105
0.9285311085916141	0.7922459686330907	0.5000000183640543	C106
0.4219002583478422	0.5806119835224537	0.4999999983916713	N1
0.5780997461671878	0.5806119877325039	0.4999999926472191	N2
0.4219002608194030	0.4193880053301915	0.4999999949467814	N3
0.5780997386883924	0.4193880032845216	0.5000000619101237	N4
0.5000000055228516	0.4999999927056703	0.5000000245497012	Cu1