Heterostructured MoP/CoMoP₂ embedded in N, P-doped carbon matrix as a highly efficient cooperative catalyst for pH-universal overall water splitting

Luyao Zheng^{a, b}, Cong Liu^c, Wenbiao Zhang^{a, d}, Boxu Gao^a, Tianlan Yan^a, Yahong Zhang^a, Xiaoming Cao^c, Qingsheng Gao^{c*} and Yi Tang^{a*}

a. Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China. E-email: <u>yitang@fudan.edu.cn</u>

b. School of Materials Science and Engineering, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou 213164, China.

c. Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.

Electrochemical measurements

Hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) were conducted at room temperature using a typical three-electrode configuration equipped with a CHI760E potentiostat (CH Instruments, China). All the potentials were converted to this reversible hydrogen electrode (RHE) according to the equation: E(RHE) = E(SCE) + 0.2422 + 0.059pH, in acidic or neutral media (1) $E(RHE) = E\left(\frac{Hg}{HgO}\right) + 0.098 + 0.059pH$, in alkaline media (2)

Overall water splitting (OWS) was conducted using a typical two-electrode system. The working electrode modified by catalysts was prepared as following procedure. 20 mg of the catalysts were ultrasonicated with 1 mL of water-ethanol-nafion solution with V_{water} : $V_{ethanol}$: $V_{nafion solution}$ =7:2:1 for 30 min to obtain a homogeneous ink. Then, 4 µL of the as-prepared ink was coated onto the glassy carbon electrode and dried in air. Linear sweep voltammetry (LSV) was performed in 0.5 M H₂SO₄, 1 M KOH or 1.0 M phosphate buffered saline (PBS) at a scan rate of 5 mV s⁻¹ with IR-corrections conducted for every electrode. A saturated calomel electrode (in 0.5 M H₂SO₄ or 1.0 M PBS) or Hg/HgO (in 1 M KOH) electrode was acting as the reference electrode and graphite rod as counter electrode. Cyclic voltammograms (CV) test was performed from 0 to 0.3 V (versus RHE) with different scan rates (25, 50, 75, 100, 150, 200, 250 and 300 mV s⁻¹). Electrochemical impedance spectroscopy (EIS) was conducted at 200 mV (versus RHE) from 10⁻² to 10⁶ Hz.

EXAFS fitting

Data reduction, data analysis, and EXAFS fitting were performed and analyzed with the Athena and Artemis programs of the Demeter data analysis packages (reference 1) that utilizes the FEFF6 program (reference 3) to fit the EXAFS data. The energy calibration of the sample was conducted through standard Co foil and Mo foil, which as a reference was simultaneously measured. A linear function was subtracted from the pre-edge region, then the edge jump was normalized using Athena software. The $\chi(k)$ data were isolated by subtracting a smooth, third-order polynomial approximating the absorption background of an isolated atom. The k3-weighted $\chi(k)$ data were Fourier transformed after applying a Hanning window function ($\Delta k = 1.0$). For EXAFS modeling, the global amplitude EXAFS (*CN*, *R*, σ^2 and ΔE_0) were obtained by nonlinear fitting, with least-squares refinement, of the EXAFS equation to the Fourier-transformed data in *R*-space, using Artemis software, EXAFS of the Co foil and Mo foil are fitted and the obtained amplitude reduction factor S_0^2 value (0.791 and 0.946) was set in the EXAFS analysis to determine the coordination numbers (*CNs*) in the Co/Mo-O scattering path in sample.

The TOF calculation

we assume that all Mo and Co atoms of electrocatalyst are active sites and the Faraday efficiency is 100%.

the number of theoretic Hydrogen molecules
$$(n_{H_2})$$

TOF = $\frac{1}{\text{the total number of Mo and Co atoms on the electrode } (n_{MoCo})$
 $n_{MoCo} = \left(\frac{m_{loading} \times W_{Mo}}{M_{Mo}} + \frac{m_{loading} \times W_{Co}}{M_{Co}}\right) \times N_A$
 $n_{H_2} = \frac{j_{\eta} \times S \times N_A}{n \times F}$

Where $m_{loading}$ is the loading mass of the catalysts on the surface of glass carbon; W_{Mo} and W_{Co} are the content of Mo and Co element collected by ICP; M_{Mo} and M_{Co} are relative atomic masses of Co and Mo; N_A is the Avogadro's number (6.02 \times 10²³ mol⁻¹); j_{η} is the current density at an overpotential of η ; S is the surface area of glassy carbon electrode; n is the number of electrons transferred per molecule (2 for HER); F is the Faraday constant (96485 C mol⁻¹).

Density Functional Theory Calculations

All calculations were performed with the Perdew–Burke–Ernzerhof (PBE) functional using the VASP code. Standard projector-augmented-wave (PAW) method was used to represent the core-valence electron interaction. PBE-D3 (BJ) is also included to describe van der Waals interaction. The valence electronic states were expanded in plane wave basis sets with energy cutoff of 450 eV.

The CoMoP₂ (104) surface is modeled by a 5-layer $p(1 \times 3)$ unit cell of 15.8 Å, 9.8 Å with a 20.0 Å vacuum between the slabs in the z direction. During the geometry

optimization, the bottom two layers are fixed while the atomic positions of the adsorbates and the top three layers are relaxed. The Brillouin zone is sampled with a 2 \times 3 \times 1 Monkhorst–Pack k-point mesh.

The MoP (101) surface is modeled by a 5-layer $p(3 \times 3)$ unit cell of 13.5 Å, 9.6 Å with a 20.0 Å vacuum between the slabs in the z direction. During the geometry optimization, the bottom two layers are fixed while the atomic positions of the adsorbates and the top three layers are relaxed. The Brillouin zone is sampled with a 2 $\times 3 \times 1$ Monkhorst–Pack k-point mesh.

Fig. S1 FFT patterns of MoP/CoMoP₂@NPC.

Fig. S2 TEM (a) and HRTEM (b) images of MoP/CoMoP₂@NPC-CS2.

Fig. S3 ESR spectra of MoP@NPC, MoP/CoMoP₂@NPC, CoMoP₂@NPC and MoP/CoMoP₂@NPC-CS1.

	Mo-P	Mo-P	MoO ₂	MoO ₂	MoO ₃	MoO ₃
	3d 3/2	3d 5/2	3d 3/2	3d 5/2	3d 3/2	3d 5/2
MoP@NPC	230.7	227.6	232.6	229.1	235.7	232.6
MoP/CoMoP ₂ @NPC	230.9	227.9	231.5	228.8	235.8	232.8
CoMoP ₂ @NPC	231.2	228.2	231.8	229.1	235.9	233.9

 Table S1 Binding energies of Mo3d for MoP@NPC, MoP/CoMoP2@NPC and

 CoMoP2@NPC.

	P-O	P 2p3/2	P 2p1/2
MoP@NPC	134.0	129.4	130.3
MoP/CoMoP ₂ @NPC	134.2	129.5	130.4
CoMoP ₂ @NPC	134.6	129.2	130.2

 Table S2 Binding energies of P2p for MoP@NPC, MoP/CoMoP2@NPC and CoMoP2@NPC.

Co2p	CoP	CoO	sattlite	CoP	CoO	sattlite
	2p 3/2	2p 3/2	2p 3/2	2p 1/2	2p 1/2	2p 1/2
MoP/CoMoP ₂ @NPC	778.7	781.9	786.4	793.5	797.7	802.9
CoMoP ₂ @NPC	778.2	781.2	785.9	793.0	797.2	802.4

	Co	Mo	Р	С	0	N
MoP@NPC	0	5.51	8.38	39.46	29.91	16.74
MoP/CoMoP ₂ @NPC	2.69	7.32	4.35	38.13	36.2	11.31
CoMoP2@NPC	5.51	5.37	18.12	32.17	20.13	18.7

Table S4 Surface atom contents of different elements determined by XPS data for MoP@NPC, MoP/CoMoP₂@NPC and CoMoP₂@NPC.

Fig. S4 Co K-edge (a) and Mo K-edge (b) XANES spectra of Co foil, CoO, Mo foil, MoO₂, MoP/CoMoP₂@NPC and MoP/CoMoP₂@NPC-CS1, respectively. Fourier transforms of the experimental Co K-edge (c, d) and Mo K-edge (e, f) EXAFS spectra of MoP/CoMoP₂@NPC and MoP/CoMoP₂@NPC-CS1, respectively.

Sample	Shell	CN ^a	$R(\text{\AA})^b$	$\sigma^2(\text{\AA}^2)^c$	$\Delta E_0(\mathrm{eV})^d$	R factor			
	Co <i>K</i> -edge ($S_0^2=0.791$)								
Co foil	Co-Co	12*	2.494±0.001	$0.0064 {\pm} 0.0001$	8.0±0.3	0.0019			
MoP/CoM	Co-O	3.9±0.2	2.088±0.013	0.0110+0.0020	72119				
oP ₂ @NPC	Co-P	2.2±0.4	2.236±0.016	0.0119 ± 0.0030	-7.3±1.8	0.0089			
-CS1	Co-M	4.4±0.7	3.184±0.013	0.0207±0.0039	9.9±7.7				
	Co-O	5.0±0.2	2.065±0.023	0.0111+0.0022	2 2 1 2 1				
MoP/CoM	Co-P	0.6±0.1	2.221±0.016	0.0111 ± 0.0023	-2.3±2.1	0.0037			
	Co-M 2.6±0.3 3.048±0.025 0.015	0.0158±0.0052	-1.0±3.3						
Mo <i>K</i> -edge $(S_0^2=0.946)$									
Ma fail	Mo-Mo	-Mo 8* 2.725±0.003 0.0039±0.0002	$0.0039 {\pm} 0.0002$	50100	0.0059				
	Mo-Mo	6*	3.141±0.004	0.0040 ± 0.0003	-3.9±0.0	0.0038			
	Mo-O	1.9±0.5	1.721±0.017	0.0054+0.0012	1.2+5.5				
MoP/CoM	Mo-P	1.6±0.3	2.157±0.020	0.0034 ± 0.0012	-1.2 ± 3.3	0.00.50			
-CS1	Mo-M	6.7±0.6	3.228±0.021	0.005(+0.0017	4.8±5.0	0.0032			
	Mo-M	2.7±0.7	3.717±0.018	0.0036±0.0017	-0.4±0.2				
	Mo-O	2.7±0.5	1.702±0.010	0.0022+0.0010	5 2 5 2				
MoP/CoM	Mo-P	1.2±0.3	2.112±0.018	0.0032 ± 0.0010	-3.2±3.3	0.00(0			
oP ₂ @NPC	Mo-M	4.8±0.8	3.234±0.008	0.0060+0.0009	8.7±1.8	0.0062			
	Mo-M	3.3±0.6	3.726±0.020	0.0000±0.0008	-0.2±4.2				

Table S5 EXAFS fitting parameters at the M K-edge for various samples.

^{*a*}*CN*, coordination number; ^{*b*}*R*, the distance to the neighboring atom; ^{*c*} σ^2 , the Mean Square Relative Displacement (MSRD); ^{*d*} ΔE_0 , inner potential correction; *R* factor indicates the goodness of the fit. *S*0² was fixed to 0.791 and 0.946, according to the experimental EXAFS fit of Co foil and Mo foil by fixing *CN* as the known crystallographic value. * This value was fixed during EXAFS fitting, based on the known structure of Co and Mo. Fitting range: $3.0 \le k$ (/Å) ≤ 14.9 and $1.0 \le R$ (Å) ≤ 3.0 (Co foil); $3.0 \le k$ (/Å) ≤ 13.5 and $1.0 \le R$ (Å) ≤ 2.4 (Co2); $3.0 \le k$ (/Å) ≤ 11.9 and $1.0 \le R$ (Å) ≤ 2.4 (Co3); $3.0 \le k$ (/Å) ≤ 17.3 and $1.0 \le R$ (Å) ≤ 3.5 (Mo foil); $3.0 \le k$ (/Å) ≤ 15.6 and $1.0 \le R$ (Å) ≤ 2.5 (Mo3). A reasonable range of EXAFS fitting parameters: $0.700 < S_0^2 < 1.000$; *CN* > 0; $\sigma^2 > 0$ Å²; $|\Delta E_0| < 10$ eV; *R* factor < 0.02.

Electrocatalyst	η ₁₀ (mV vs.RHE)	Tafel slope (mV dec ⁻ ¹)	Reference
MoP/CoMoP ₂ @NPC	71	37	This work
MoP@NC	96	49	[1]
MoP@NPCNFs	64	66	[2]
MoP NA/CC	124	58	[3]
N-MoP/C	150	62	[4]
MoP@C@rGo	169	79	[5]
La-MoP@NC	142	58	[6]
MoP@NPCS	113	58	[7]
MoP@NPC-H	141	59	[8]
MoS ₂ /MoP/NC	151	58	[9]
MoPS	158	52	[10]
CoP(MoP)- CoMoO3@CN	198	105	[11]
Mo ₂ C/MoP@NPC	160	75	[12]

 $\label{eq:comparison} \begin{array}{l} \textbf{Table S6} \ Comparison of HER performance of MoP/CoMoP_2@NPC catalysts with other MoP-based electrocatalysts in 0.5 M H_2SO_4. \end{array}$

Fig. S5 TOF values for HER in 0.5 M H₂SO₄: I: MoP/CoMoP₂@NPC, II: MoP@NPC, III: CoMoP₂@NPC, IV: MoP/CoMoP₂@NPC @NPC-CS1, V: MoP/CoMoP₂@NPC @NPC-CS2.

Electrocatalyst	η ₁₀ (mV vs. RHE)	η ₁₀₀ (mV vs. RHE)	Tafel slope (mV dec ⁻ ¹)	TOF (100 mV, H ₂ s ⁻¹)	TOF (200 mV, H ₂ s- ¹)	ECSA (cm²)	EIS (Ω)
MoP@NPC	109	200	61	0.01	0.19	22.2	32.7
CoMoP ₂ @NPC	184	350	96	0.001	0.02	5.4	76.2
MoP/CoMoP ₂ @NPC	71	123	37	0.09	0.60	35.9	13.5
MoP/CoMoP ₂ @NPC- CS1	144	270	84	0.003	0.07	12.9	53.2
MoP/CoMoP ₂ @NPC- CS2	245	413	120	0.0006	0.005	1.7	161.9
Pt/C	34	149	38				

Table S7 Summarized acidic HER activity of prepared catalysts

Fig. S6 CV curves with different scan rates in 0.5 M H_2SO_4 for (a) MoP/CoMoP₂@NPC, (b) MoP@NPC, (b) CoMoP₂@NPC, (d) MoP/CoMoP₂@NPC-CS1 and (e) MoP/CoMoP₂@NPC-CS2.

Fig. S7 (a) Polarization curves (iR corrected) for HER in 1 M PBS; (b) their corresponding Tafel plots; (c) Comparisons of η_{10} and Tafel slope of the corresponding samples, I: MoP/CoMoP₂@NPC, II: MoP@NPC, III: CoMoP₂@NPC, IV: MoP/CoMoP₂@NPC @NPC-CS1, V: MoP/CoMoP₂@NPC @NPC-CS2, VI: commercial Pt/C.

Fig. S8 (a) Polarization curves (iR corrected) for HER in 1 M KOH; (b) their corresponding Tafel plots; (c) Comparisons of η_{10} and Tafel slope of the corresponding samples: I: MoP/CoMoP₂@NPC, II: MoP@NPC, III: CoMoP₂@NPC, IV: MoP/CoMoP₂@NPC @NPC-CS1, V: MoP/CoMoP₂@NPC @NPC-CS2, VI: commercial Pt/C.

Fig. S9 Stability of the MoP/CoMoP₂@NPC with an initial LSV curve and after 5000 cycles in 1 M PBS (a) and 1M KOH (b), inset: the long-term durability tests (CA curve) at η =100 mV.

buse	a electrocatarysts				
Catalysts	η ₁₀ (mV) (1 M PBS)	Tafel Slope (mV dec ⁻¹) (1 M PBS)	η ₁₀ (mV) (1 M KOH)	Tafel Slope (mV dec ⁻¹) (1 M KOH)	Ref.
MoP/CoMoP ₂ @NPC	131	71	93	40	This work
MoP NA/CC	187	94	80	83	[3]
MoP@NC	191	95	149	62	[1]
MoP/NPG	150	102	126	56	[13]
P-MoP/Mo ₂ N	91	51	89	78	[14]
Mo ₂ C/MoP@NPC	228	125	169	65	[12]
MoP/Mo ₂ C@C	136	93	75	58	[15]
3.4 at% S-MoP	148	142	106	56	[16]
HF-MoSP	/	456	128	89	[17]
0.02 Ni–MoP	222	160	103	162	[18]

Table S8 Comparison of HER performance of MoP/CoMoP₂@NPC catalysts with other MoPbased electrocatalysts in 1 M PBS and 1 M KOH.

Fig. S10 TOF values of in neutral (a) and alkaline (b) media: I: MoP/CoMoP₂@NPC, II: MoP@NPC, III: CoMoP₂@NPC, IV: MoP/CoMoP₂@NPC @NPC-CS1, V: MoP/CoMoP₂@NPC @NPC-CS2.

Catalysts	$\eta_{10} ({ m mV})$ (0.5 M H ₂ SO ₄)	Tafel Slope (mV dec ⁻¹) (0.5 M H ₂ SO ₄)	Ref.
MoP/CoMoP2@NPC	261	37	This work
F doped Cu _{1.5} Mn _{1.5} O ₄	320	60	[19]
Co ₃ O ₄ /FTO	570	80	[20]
Ag-doped Co ₃ O ₄	470	92	[21]
Co ₂ TiO ₄	513	240	[22]
Co ₃ O ₄ @C/CP	370	82	[23]
$Co_{0.05}Fe_{0.95}O_{v}$	650	110	[24]
Fe-TiO _x LNWs/Ti	260	126	[25]
FeNC	320	305	[26]
MoS ₂ /Co ₉ S ₈ /Ni ₃ S ₂ /Ni	225	78	[27]
SWCNTs/MoSe ₂ -2:Mo ₂ C	197	/	[28]

Table S9 Summarized acidic OER performance of some previously reported electrocatalysis with present work in acidic media.

Fig. S11 (a) Polarization curves (iR corrected) for OER in 1 M PBS; (b) their corresponding Tafel plots; (c) Comparisons of η_{10} and Tafel slope of the corresponding samples. (d) Stability of the MoP/CoMoP2@NPC with an initial LSV curve and after 5000 cycles in 0.5 M H₂SO₄, inset: the long-term durability tests (CA curve) at η =1.6 V. I: MoP/CoMoP₂@NPC, II: MoP@NPC, III: CoMoP₂@NPC, IV: @NPC-CS1, V: MoP/CoMoP₂@NPC MoP/CoMoP₂@NPC @NPC-CS2, VI: commercial Pt/C.

Fig. S12 (a) Polarization curves (iR corrected) for OER in 1 M KOH; (b) their corresponding Tafel plots; (c) Comparisons of η_{10} and Tafel slope of the corresponding samples. (d) Stability of the MoP/CoMoP2@NPC with an initial LSV curve and after 5000 cycles in 0.5 M H₂SO₄, inset: the long-term durability tests (CA curve) at η =1.6 V. I: MoP/CoMoP₂@NPC, II: MoP@NPC, III: CoMoP₂@NPC, IV: MoP/CoMoP₂@NPC @NPC-CS1, V: MoP/CoMoP₂@NPC @NPC-CS2, VI: commercial Pt/C.

	$\eta_{10} (\mathrm{mV})$	$\eta_{100}(\mathrm{mV})$	Tafel Slope (mV dec ⁻¹)
MoP@NPC	283	373	61
MoP/CoMoP2@NPC	260	323	37
CoMoP ₂ @NPC	430	560	96
MoP/CoMoP2@NPC-CS1	367	479	84
MoP/CoMoP ₂ @NPC-CS2	456	593	120
RuO ₂	298	430	38

Table S10 OER parameters in 0.5M H₂SO₄ for MoP@NPC, MoP/CoMoP₂@NPC, CoMoP₂@NPC, MoP/CoMoP₂@NPC-CS1 and MoP/CoMoP₂@NPC-CS2.

	$\eta_{10}(\mathrm{mV})$	$\eta_{100}(\mathrm{mV})$	Tafel Slope (mV dec ⁻¹)
MoP@NPC	352	466	81
MoP/CoMoP2@NPC	317	423	69
CoMoP ₂ @NPC	495	669	111
MoP/CoMoP2@NPC-CS1	447	589	96
MoP/CoMoP ₂ @NPC-CS2	570	791	137
RuO ₂	385	509	87

Table S11 OER parameters in 1M PBS for MoP@NPC, MoP/CoMoP₂@NPC, CoMoP₂@NPC, MoP/CoMoP₂@NPC-CS1 and MoP/CoMoP₂@NPC-CS2.

	$\eta_{10} (\mathrm{mV})$	$\eta_{100}(\mathrm{mV})$	Tafel Slope (mV dec ⁻¹)
MoP@NPC	313	388	81
MoP/CoMoP2@NPC	284	340	52
CoMoP ₂ @NPC	453	620	126
MoP/CoMoP2@NPC-CS1	415	507	92
MoP/CoMoP ₂ @NPC-CS2	474	674	164
RuO ₂	344	429	86

Table S12 OER parameters in 1 M KOH for MoP@NPC, MoP/CoMoP₂@NPC, CoMoP₂@NPC, MoP/CoMoP₂@NPC-CS1 and MoP/CoMoP₂@NPC-CS2.

Fig. S13 LSV curves normalized by ECSA for HER and OER in 0.5 M H₂SO₄ of I: MoP/CoMoP₂@NPC, II: MoP@NPC, III: CoMoP₂@NPC, IV: MoP/CoMoP₂@NPC-CS1, V: MoP/CoMoP₂@NPC-CS2.

Fig. S14 LSV curves of NPC for HER and OER in acidic media.

Fig. S15 Comparisons of η_{10} of cell voltage in acidic (a), neutral (b) and alkaline media(c). I: MoP/CoMoP₂@NPC||MoP/CoMoP₂@NPC, II: MoP@NPC||MoP@NPC, III: CoMoP₂@NPC||CoMoP₂@NPC, IV: MoP/CoMoP₂@NPC-CS1||MoP/CoMoP₂@NPC-CS1, V: MoP/CoMoP₂@NPC-CS2||MoP/CoMoP₂@NPC-CS2, VI: CoMoP₂@NPC||MoP@NPC, CoMoP₂@NPC||CoMoP₂@NPC||RuO₂||Pt/C.

Fig. S16 The long-term durability tests (CA curve) at cell voltage=1.55, 1.6 and 1.55 V in $0.5M H_2SO_4$ (a), 1M PBS (b) and 1M KOH (c).

	Before stability test (%)	After stability test (%)
Со	7.2	6.7
Мо	28.7	25.3
Р	12.8	13.2
С	18.5	18.9

Table S13 Co/Mo/P/C compositions before and after stability test by ICP (Co/Mo) and organic element analysis (P/C).

Fig. S17 The XRD patterns of MoP/CoMoP₂@NPC before and after stability test.

Fig. S18 Top (the first row, 1) and side (the second row, 2) views of (a) $CoMoP_2(104)$ and (b) MoP(101) surface. The Mo, Co, P atoms are respectively displayed in cyan, blue and pink.

Fig. S19 Top (the first row, 1) and side (the second row, 2) views of DFT optimized IS (a), TS (b) and FS (c) structures for H_2O dissociation on $CoMoP_2$ (104). The H, O atoms are respectively displayed in white and red.

Fig. S20 Top (the first row, 1) and side (the second row, 2) views of DFT optimized IS (a), TS (b) and FS (c) structures for H_2O dissociation on MoP (101).

Fig. S21 Top (the first row, 1) and side (the second row, 2) views of possible P vacancy on CoMoP₂(104) after geometry optimization (the red dashed circle marks the site of P vacancy) and the reaction energies with reference to the chemical potential of P at gaseous PH₃. The structure shown in Figure S21d² has the lowest P vacancy formation energy.

Fig. S22 Top (the first row, a) and side (the second row, b) views of P vacancy on MoP(101) after geometry optimization (the red dashed circle marks the site of P vacancy).

Fig. S23 Top (the first row) and side (the second row) views of DFT optimized IS, TS and FS structures for H_2O dissociation on $CoMoP_2$ -Pv.

Fig. S24 Top (the first row, 1) and side (the second row, 2) views of DFT optimized IS (a), TS (b) and FS (c) structures for H_2O dissociation on MoP-Pv.

References

- 1. C. Pi, C. Huang, Y. Yang, H. Song, X. Zhang, Y. Zheng, B. Gao, J. Fu, P. K. Chu and K. Huo, *Applied Catalysis B: Environmental*, 2020, **263**, 118358.
- 2. M. Wang, C. Ye, M. Xu and S. Bao, *Nano Research*, 2018, **11**, 4728-4734.
- 3. Z. Pu, S. Wei, Z. Chen and S. Mu, *Applied Catalysis B: Environmental*, 2016, **196**, 193-198.
- 4. X. Liu, L. Zhang, M. Li and X. Hu, *Chem. Commun. (Cambridge, U. K.)*, 2018, **54**, 2502-2505.
- Y. Zhang, J. Yang, Q. Dong, H. Geng, Y. Zheng, Y. Liu, W. Wang, C. C. Li and X. Dong, ACS Appl. Mater. Interfaces, 2018, 10, 26258-26263.
- 6. P. Wei, X. Li, Z. He, Z. Li, X. Zhang, X. Sun, Q. Li, H. Yang, J. Han and Y. Huang, Applied Catalysis B: Environmental, 2021, **299**, 120657.
- J.-T. Ren, L. Chen, D.-D. Yang and Z.-Y. Yuan, *Applied Catalysis B:* Environmental, 2020, 263, 118352.
- 8. J.-Q. Chi, W.-K. Gao, L.-M. Zhang, B. Dong, K.-L. Yan, J.-H. Lin, B. Liu, Y.-M. Chai and C.-G. Liu, *ACS Sustainable Chemistry & Engineering*, 2018, **6**, 7676-7686.
- 9. J.-Q. Chi, Y.-M. Chai, X. Shang, B. Dong, C.-G. Liu, W. Zhang and Z. Jin, *Journal of Materials Chemistry A*, 2018, **6**, 24783-24792.
- 10. Y. Huang, X. Song, J. Deng, C. Zha, W. Huang, Y. Wu and Y. Li, *Applied Catalysis B: Environmental*, 2019, **245**, 656-661.
- L. Yu, Y. Xiao, C. Luan, J. Yang, H. Qiao, Y. Wang, X. Zhang, X. Dai, Y. Yang and H.
 Zhao, ACS Appl. Mater. Interfaces, 2019, 11, 6890-6899.
- 12. J.-Q. Chi, W.-K. Gao, J.-H. Lin, B. Dong, K.-L. Yan, J.-F. Qin, Z.-Z. Liu, Y.-M. Chai

and C.-G. Liu, Journal of colloid and interface science, 2018, 513, 151-160.

- 13. R. Ge, J. Huo, T. Liao, Y. Liu, M. Zhu, Y. Li, J. Zhang and W. Li, *Applied Catalysis B: Environmental*, 2020, **260**, 118196.
- Y. Gu, A. Wu, Y. Jiao, H. Zheng, X. Wang, Y. Xie, L. Wang, C. Tian and H. Fu, Angew. Chem. Int. Ed., 2021, 60, 6673-6681.
- 15. L.-N. Zhang, S.-H. Li, H.-Q. Tan, S. U. Khan, Y.-Y. Ma, H.-Y. Zang, Y.-H. Wang and Y.-G. Li, *ACS Appl. Mater. Interfaces*, 2017, **9**, 16270-16279.
- K. Liang, S. Pakhira, Z. Yang, A. Nijamudheen, L. Ju, M. Wang, C. I. Aguirre-Velez,
 G. E. Sterbinsky, Y. Du and Z. Feng, *ACS Catalysis*, 2018, **9**, 651-659.
- A. Wu, C. Tian, H. Yan, Y. Jiao, Q. Yan, G. Yang and H. Fu, *Nanoscale*, 2016, 8, 11052-11059.
- M. Ding, H. Xu, M. Liu, Y. Wang, A. Wang, T. Lin, L. Zhang and K. Zhang, *Chem. Eng. J.*, 2022, **430**, 132674.
- P. P. Patel, M. K. Datta, O. I. Velikokhatnyi, R. Kuruba, K. Damodaran, P. Jampani,
 B. Gattu, P. M. Shanthi, S. S. Damle and P. N. Kumta, *Scientific reports*, 2016, 6, 28367.
- 20. J. S. Mondschein, J. F. Callejas, C. G. Read, J. Y. Chen, C. F. Holder, C. K. Badding and R. E. Schaak, *Chem. Mater.*, 2017, **29**, 950-957.
- 21. K.-L. Yan, J.-F. Qin, J.-H. Lin, B. Dong, J.-Q. Chi, Z.-Z. Liu, F.-N. Dai, Y.-M. Chai and C.-G. Liu, *Journal of Materials Chemistry A*, 2018, **6**, 5678-5686.
- 22. S. Anantharaj, K. Karthick and S. Kundu, *Inorg. Chem.*, 2019, **58**, 8570-8576.
- 23. J. Wang, J. Liu, B. Zhang, H. Wan, Z. Li, X. Ji, K. Xu, C. Chen, D. Zha and L. Miao,

Nano Energy, 2017, **42**, 98-105.

- 24. W. L. Kwong, C. C. Lee, A. Shchukarev and J. Messinger, *Chem. Commun.* (*Cambridge, U. K.*), 2019, **55**, 5017-5020.
- L. Zhao, Q. Cao, A. Wang, J. Duan, W. Zhou, Y. Sang and H. Liu, *Nano Energy*, 2018, **45**, 118-126.
- K. Mamtani, D. Jain, A. C. Co and U. S. Ozkan, *Energy Fuels*, 2017, **31**, 6541 6547.
- 27. Y. Yang, H. Yao, Z. Yu, S. M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao and G. Sun, *Journal of the American Chemical Society*, 2019, **141**, 10417-10430.
- 28. L. Najafi, S. Bellani, R. Oropesa-Nuñez, M. Prato, B. Martín-García, R. Brescia and F. Bonaccorso, *ACS Nano*, 2019, **13**, 3162-3176.