Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Elucidation of polyethylene glycol adsorption at the solid-H₂O(l) interfaces of anatase TiO₂(101) using Density Functional Theory and molecular dynamics simulations

Hee-Joon Chun,^{†*} Kang-Sahn Kim,[†] Giwoong Ha^{*}

Corporate R&D Institute, Samsung Electro-Mechanics Co., Ltd., 150, Maeyoung-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16674, Republic of Korea

[†]: equally participated

*Corresponding authors: hj.chun@samsung.com, giwoong.ha@samsung.com

Section S1. AIMD simulations for $H_2O(l)_{1ML}^*$ on TiO₂(101)

We have performed the AIMD simulation for $H_2O(l)_{1ML}^*$ using TiO₂(101). All the snapshots at each picosecond (ps) shows 1 monolayer (ML) of H₂O*, occupying all the Ti_{5C} sites. The representative snapshot is provided in Fig. S1. Table S1 shows a comparison of $H_2O(l)_{1ML}^*$ and $H_2O(l) < 1ML^*$. The energy difference of these two structures is more than 1 eV, because properties of bulk liquid water (e.g. total number of the hydrogen bond and the water structure) are different. Therefore, a direct comparison is not appropriate for analyzing the adsorption free energy of PEG*.

Fig. S1. Representative top and side views of the $H_2O(l)_{1ML}^*$ on the TiO₂(101) surface at 10 ps of the AIMD simulation. Water molecules are shown in a simplified form. Light blue, Ti; red, O; white, H.

		$H_2 O(l)_{1ML}^{*}$			$H_2O(l)_{<1ML}^{*}$ 1)		E_{DFT} – E_{DFT}
ps	E _{DFT} (eV)	Total number of the hydrogen bond in bulk liquid	$\theta_{H_20^*}$ (ML) ²⁾	E _{DFT} (eV)	Total number of the hydrogen bond in bulk liquid	$\theta_{H_20^*}$ (ML) ²⁾	$H_2^{O(l)} < 1ML^*$ $H_2^{O(l)}_{1N}$ (eV)
1	-1591.80	136	1.00	-1586.94	119	0.75	4.86
2	-1591.01	134	1.00	-1588.47	118	0.75	2.55
3	-1592.35	145	1.00	-1589.52	123	0.75	2.82
4	-1592.45	140	1.00	-1589.45	125	0.75	2.99
5	-1593.21	139	1.00	-1589.04	121	0.75	4.17
6	-1593.18	141	1.00	-1589.36	121	0.75	3.82
7	-1593.82	140	1.00	-1589.21	117	0.75	4.60
8	-1593.65	142	1.00	-1588.66	116	0.75	4.99
9	-1593.32	137	1.00	-1589.47	122	0.75	3.85
10	-1592.99	141	1.00	-1589.18	125	0.75	3.80
Average	-1592.78	139.50	1.00	-1588.93	120.70	0.75	3.85

Table S1. Comparison of $H_2O(l)_{1ML}^*$ and $H_2O(l)_{<1ML}^*$

¹⁾ the corresponding water structure is obtained from the AIMD snapshots of 0.25 ML PEG-5*.

 $^{2)}$ the surface coverage of $\mathrm{H_{2}O^{*}}.$

Section S2. H₂O desorption energy $\begin{pmatrix} \Delta G \\ H_2 O^* \to H_2 O(l) \end{pmatrix}$

When adsorbed H₂O is desorbed from the TiO₂ surface, it loses the adsorption energy while gains solvation energy. From the AIMD snapshots of $H_2O(l)_{1ML}^*$, we found that H₂O* has hydrogen bonds with water molecules and with the neighboring O_{2C} atom at the surface (Fig. S2). Thus, the energy of H₂O* is calculated based on this configuration using the single point calculations of the obtained AIMD snapshots.

Fig. S2. Top and side views of H_2O^* on $TiO_2(101)$. The black arrows represent the hydrogen bonds. Light blue, Ti; red, O; blue, O of H_2O^* ; light green, H of H_2O^* ; white, H.

As for the $H_2O(l)$ solvation energy, we found that single $H_2O(l)$ in bulk liquid water has different number of hydrogen bonds. Thus, the water solvation energy was calculated for each case as provided in Table S2.

Number of hydrogen bond	Number of H ₂ O(l) molecules that has corresponding	Solvation energy for single $H_2O(1)$ (eV) ¹⁾	Total solvation energy (eV) ²⁾
	hydrogen bonds		
5	2	-1.56	-3.12
4	16	-1.25	-19.97
3	19	-0.94	-17.79
2	22	-0.64	-13.73
1	10	-0.31	-3.12
Sum	69	-4.68	-57.73

Table S2. Hydrogen bonds for single H₂O(l) in $H_2O(l)_{1ML}^*$.

 E_{DFT}

¹⁾ Solvation energy (eV) = ${}^{DFI} H_2 O(l)_x^* {}^{DFI} H_2 O(l)_{x-1}^* {}^{DFI} H_2 O(g)_{x-1}^* (x \text{ is the total number of } H_2 O(l) \text{ molecules in the unit cell})$ ²⁾ Total solvation energy (eV) = Solvation energy (eV) × the number of H₂O(l) molecules that has corresponding hydrogen bonds.

The average solvation energy for $H_2O(l)$ ($E_{solvation}$) is the sum of total solvation energy (-57.73 eV) divided by the sum of the number of $H_2O(l)$ (69), which gives -0.84 eV/ $H_2O(l)$. Thus, we can define the chemical potentials for H_2O^* and $H_2O(l)$ as follows:

$$\mu_{H_20^*} = E_{DFT}_{H_20^*} + ZPE_{H_20^*} - T\Delta S_{H_20^*}$$
(S1)
$$\mu_{H_20(l)} = E_{DFT}_{H_20(g)} + ZPE_{H_20(g)} - T\Delta S_{H_20(g)} + E_{solvation}$$
(S2)

where E_{DFT} , ZPE, and ΔS are the DFT energy, zero-point energy, and entropy of the species, respectively. The entropy of H₂O(g) at the standard state was taken from the standard thermodynamic table,^{S1} while the corresponding energy for H₂O* is calculated using the vibrational frequency based on frustrated translation and rotation.^{S2} Putting Equations S1 and S2 in Equation 10 in the main text gives,

$$\Delta G_{H_20^* \to H_20(l)} = E_{DFT_{H20(g)}} + ZPE_{H_20(g)} - T\Delta S_{H_20(g)} + E_{solvation} + E_{DFT*} - (E_{DFT}_{H_20^*} + ZPE_{H_20^*} - T\Delta S_{H_20^*})$$
(S3)

Consequently, a value for the desorption free energy for H_2O^* on TiO₂(101) is 0.08 eV/H₂O. This indicates that the process is almost energetically neutral. The total number of adsorbed H_2O is 4/unit cell (1ML) at $H_2O(l)_{1ML}^*$ based on our TiO₂ slab model (4 Ti_{5C} sites/unit cell) before PEG adsorption. Thus, the total number of desorbed H_2O molecules per unit cell (*N*) is determined by,

$$N$$
 (#/unit cell) = 4 - the total number of H₂O^{*} at $H_2O(l) < 1ML^*$ (S4)

Section S3. H₂O* dissociation and OH* formation on anatase TiO₂(101)

To confirm the OH* formation on $TiO_2(101)$, we performed the kinetic barrier energy calculation for H_2O dissociation using the nudged elastic band (NEB) method.^{S3} Fig. S3 (a) shows the H_2O^* dissociation kinetic barriers in the presence of zero, single, and full liquid water on the $TiO_2(101)$ slab where the coverage of PEG-5* is 0.75 ML. We found that the barrier energy increases with increasing the number of $H_2O(l)$ because H_2O^* dissociation requires more energy to break hydrogen bonding which is formed between water molecules. For example, in the presence of full liquid water, H_2O^* on the surface forms hydrogen bonds with two $H_2O(l)$ (Fig. S3 (b)), and the hydrogen bonds with these water molecules are broken during a H_2O^* dissociation pathway. Therefore, the kinetic barrier energy under full liquid $H_2O(l)$ (1.31 eV) is higher than the barrier from the situation where there is no (0.71 eV) or only single $H_2O(l)$ (0.73 eV). Based on the harmonic transition state theory, the kinetic barrier of 1.31 eV is energetically insurmountable and therefore it could not generate

the observable rate at the room temperature. Therefore, the OH* formation is energetically unfavorable on anatase $TiO_2(101)$ surface and is expected to form no or a very low surface coverage which may not impact on the PEG adsorption.

Fig. S3. (a) free energy diagrams for H_2O^* dissociation on the anatase TiO₂(101) surface in the presence of PEG-5* (0.75 ML) and $H_2O(l)$. The values shown in the plot are the kinetic barrier energies for H_2O^* dissociation (the color index is the same as the plot). (b) Top and side views of H_2O^* dissociation in the presence of PEG-5* (0.75 ML) and $H_2O(l)$. The PEG-5* and bulk liquid water molecule are shown as simplified forms, while surface adsorbed H_2O (H_2O^*) and surface adjacent $H_2O(l)$ are described using blue (O) and light green (H) circles. Light blue, Ti; red, O; blue, O of H_2O^* and surface adjacent $H_2O(l)$; white, H of PEG*; brown, C of PEG*.

Section S4. AIMD simulation results for PEG-5*

ps	E_{DFT} $(PEG/H_2O(l) < 1ML)$ (eV)	$E_{DFT} + \frac{H_2O(l)}{(eV)} < 1ML^*$	$E_{DFT_{PEG(g)}}$ (undissociated) (eV)	$E_{DFT}_{PEG}^{*}$ (eV)	$ \begin{array}{c} E_{DFT} \\ (slab) \\ (eV) \end{array} $	$E_{DFT_{PEG}}$ (dissociated) (eV) ¹⁾	$\begin{bmatrix} E_{DFT_{PEG}(g)} \\ (\text{dissociated}) \\ (eV)^{2j} \end{bmatrix}$	$E_{DFT}_{PEG_head}^{*} (adsorption) \\ (eV)^{3)}$	$E_{DFT}_{PEG_chain}^{*} (interaction) \\ (eV)^{4)}$
1	-1805.98	-1586.94	-212.28	-738.27	-524.07	-206.31	-206.27	-1.88	-0.04
2	-1807.58	-1588.47	-212.28	-738.36	-523.96	-206.42	-206.38	-2.08	-0.04
3	-1808.62	-1589.52	-212.28	-738.42	-524.13	-206.47	-206.45	-1.99	-0.02
4	-1808.79	-1589.45	-212.28	-738.38	-524.30	-206.46	-206.44	-1.77	-0.03
5	-1808.24	-1589.04	-212.28	-738.37	-524.37	-206.48	-206.45	-1.69	-0.02
6	-1808.50	-1589.36	-212.28	-738.47	-524.22	-206.52	-206.49	-1.93	-0.03
7	-1808.31	-1589.21	-212.28	-738.42	-524.41	-206.50	-206.47	-1.71	-0.03
8	-1808.26	-1588.66	-212.28	-738.44	-524.30	-206.51	-206.47	-1.82	-0.04
9	-1808.63	-1589.47	-212.28	-738.43	-524.30	-206.52	-206.49	-1.81	-0.03
10	-1808.73	-1589.18	-212.28	-738.34	-524.34	-206.46	-206.44	-1.70	-0.02
Average	-1808.16	-1588.93	-212.28	-738.39	-524.24	-206.47	-206.44	-1.84 ± 0.12	-0.03 ± 0.01

Table S3. Data for 0.25 ML PEG-5* on $TiO_2(101)$

Table S3. continued

ps	$E_{DFT}_{PEG \ ^* \ (solvation)} \\ (eV)^{5)}$	$\frac{\Delta H_{PEG}^{}*}{(\mathrm{eV})^{6)}}$	E _{DFT} PEG_head * (adsorption) /# of PEG (eV/PEG) ⁷⁾	E _{DFT} PEG_chain * (interaction) /# of monomer (eV/monomer) ⁸⁾	# _{H - bond} 9)	E_{DFT} PEG * (solvation) /# of O in PEG* (eV/monomer) ¹⁰⁾	$\theta_{PEG^{*}}$ (ML) ¹¹⁾	$\theta_{H_20^*}$ (ML) ¹²⁾	N ¹³⁾
1	-4.84	-6.76	-1.88	-0.01	9	-0.81	0.25	0.75	1
2	-4.71	-6.83	-2.08	-0.01	9	-0.78	0.25	0.75	1
3	-4.81	-6.81	-1.99	-0.01	10	-0.80	0.25	0.75	1
4	-5.26	-7.05	-1.77	-0.01	9	-0.88	0.25	0.75	1
5	-5.21	-6.92	-1.69	-0.01	10	-0.87	0.25	0.75	1
6	-4.89	-6.86	-1.93	-0.01	8	-0.82	0.25	0.75	1
7	-5.08	-6.81	-1.71	-0.01	10	-0.85	0.25	0.75	1
8	-5.46	-7.32	-1.82	-0.01	10	-0.91	0.25	0.75	1
9	-5.03	-6.88	-1.81	-0.01	9	-0.84	0.25	0.75	1
10	-5.54	-7.26	-1.70	-0.01	11	-0.92	0.25	0.75	1

Average	$\textbf{-5.08} \pm 0.27$	-6.95 ± 0.19	-1.84	-0.01	9.50	-0.85	0.25	0.75	1		
¹⁾ Single poir	Single point calculation for dissociated PEG where the structure and unit cell are from $E_{DFT} \left(\frac{PEG/H_2O(l) < 1ML}{E_{DFT}} \right)^*$										
²⁾ Single poir E _{DFT} 3) PEG_he	Single point calculation for dissociated PEG where the structure is from $E_{DFT} = E_{DFT} - E_{DFT} - E_{DFT} + $										
4) E _{DFT} PEG_ch	$E_{DFT}_{PEG_chain^*(interaction)} = E_{DFT}_{PEG}(dissociated) - the total number of dissociated PEG^* in the unit cell × E_{DFT}_{PEG(g)}(dissociated))$										
E_{DFT}_{PEG*}	$E_{DFT}_{PEG^{*}(solvation)} = E_{DFT}_{(PEG/H_{2}O(l) < 1ML)^{*}} - E_{DFT}_{H_{2}O(l) < 1ML^{*}} - E_{DFT}_{PEG^{*}} + E_{DFT}_{PEG^{*}}$										
$_{6)}\Delta H_{PEG^{*}} =$	E E DFT PEG_head * (ad	sorption) $+ E_{DFT}_{PE}$	$E_{G_{chain}}^{*}$ (interaction) + E_{DFT}_{P}	PEG [*] (solvation)							
E _{DFT} PEG _{he}	ad * (adsorption)	E _{DFT} PEG_	head * (adsorption)								
7) # 0	f PEG * t	he total number	of PEG st in the unit cell								
E _{DFT} PEG _{ch}	ain [*] (interaction)	Ε	, DFT PEG_chain [*] (interaction)								
8) # of 1	# of monomer the total number of the PEG* monomer in the unit cell										
⁹⁾ the total hy E_{DFT}_{PEG} *	the total hydrogen bond number between PEG* and surrounding H ₂ O(1) molecules $E_{DFT} E_{PEG^{*}(solvation)} PEG^{*}(solvation)$										
10) # of 0 in	n PEG * _ the to	otal number of th	he oxygen atom in PEG* i	n the unit cell							

¹¹⁾ the surface coverage of PEG* in the unit cell ¹²⁾ the surface coverage of H_2O^* in the unit cell ¹³⁾ the total number of desorbed H_2O /unit cell during PEG adsorption

Table S4. Data for 0.50 ML PEG-5* on TiO₂(101)

ps	$\begin{bmatrix} E_{DFT} \\ (PEG/H_2^{O(l)} < 1ML) \\ (eV) \end{bmatrix}$	E_{DFT} $H_2^{O(l)} < 1ML^*$ (eV)	$E_{DFT_{PEG(g)}}$ (undissociated) (eV)	$E_{DFT}_{PEG}^{*}$ (eV)	$\frac{E_{DFT}}{(\text{slab})}$ (eV)	$E_{DFT_{PEG}}$ (dissociated) (eV) ¹⁾	$\begin{bmatrix} E_{DFT_{PEG(g)}} \\ (\text{dissociated}) \\ (eV)^{2j} \end{bmatrix}$	$E_{DFT}_{PEG_head}^{*} (adsorption) \\ (eV)^{3)}$	$E_{DFT}_{PEG_chain}^{*} (interaction) \\ (eV)^{4)}$
1	-1769.15	-1331.65	-212.28	-952.18	-523.05	-413.25	-206.35	-4.01	-0.56
2	-1770.36	-1332.38	-212.28	-952.05	-523.31	-413.16	-206.26	-3.53	-0.63
3	-1770.70	-1332.17	-212.28	-951.85	-523.06	-413.02	-206.45	-4.10	-0.12
4	-1769.36	-1331.19	-212.28	-952.24	-523.33	-413.31	-206.37	-3.78	-0.57
5	-1770.65	-1333.62	-212.28	-952.26	-522.78	-413.30	-206.40	-4.43	-0.49
6	-1770.49	-1333.09	-212.28	-952.04	-522.85	-413.31	-206.25	-3.82	-0.80
7	-1770.96	-1332.99	-212.28	-952.15	-523.14	-413.45	-206.35	-3.70	-0.74
8	-1771.07	-1333.32	-212.28	-952.36	-523.25	-413.54	-206.41	-3.83	-0.71
9	-1771.05	-1333.72	-212.28	-952.54	-523.27	-413.64	-206.47	-3.99	-0.71

10	-1771.31	-1333.84	-212.28	-952.49	-523.25	-413.59	-206.45	-3.98	-0.69
Average	-1770.51	-1332.80	-212.28	-952.22	-523.13	-413.36	-206.38	-3.92 ± 0.23	-0.60 ± 0.18

Table S4. continued

ps	$E_{DFT}_{PEG} * (solvation) \\ (eV)^{5)}$	$\begin{array}{c} \Delta H \\ PEG^{*} \\ (eV)^{6)} \end{array}$	E _{DFT} PEG_head * (adsorption) /# of PEG (eV/PEG) ⁷⁾	E _{DFT} PEG_chain * (interaction) /# of monomer (eV/monomer) ⁸⁾	# _{H - bond⁹)}	E _{DFT} PEG [*] (solvation) /# of O in PEG [*] (eV/monomer) ¹⁰⁾	θ_{PEG^*} (ML) ¹¹⁾	$\theta_{H_20^*}$ (ML) ¹²⁾	N ¹³⁾
1	-8.36	-12.93	-2.00	-0.06	17	-0.70	0.50	0.50	2
2	-9.25	-13.41	-1.77	-0.06	18	-0.77	0.50	0.50	2
3	-9.73	-13.96	-2.05	-0.01	20	-0.81	0.50	0.50	2
4	-9.25	-13.60	-1.89	-0.06	17	-0.77	0.50	0.50	2
5	-7.54	-12.46	-2.21	-0.05	15	-0.63	0.50	0.50	2
6	-8.21	-12.83	-1.91	-0.08	17	-0.68	0.50	0.50	2
7	-8.96	-13.40	-1.85	-0.07	18	-0.75	0.50	0.50	2
8	-8.63	-13.18	-1.92	-0.07	18	-0.72	0.50	0.50	2
9	-8.06	-12.76	-2.00	-0.07	16	-0.67	0.50	0.50	2
10	-8.23	-12.90	-1.99	-0.07	16	-0.69	0.50	0.50	2
Average	-8.62 ± 0.63	-13.14 ± 0.43	-1.96	-0.06	17.20	-0.72	0.50	0.50	2.00
				F					

 $E_{DFT} \left(\frac{PEG/H_2 O(l)}{1ML} \right)^*$ ¹⁾ Single point calculation for dissociated PEG where the structure and unit cell are from

²⁾ Single point calculation for dissociated PEG where the structure is from E_{DFT} = E_{DFT} $-E_{DFT}$ $-E_{DFT}$ C_{DFT} E_{DFT} $-E_{DFT}$ $-E_{DFT}$ E_{DFT} $E = E_{DFT_{PEG}}(dissociated) - the total number of dissociated PEG[*] in the unit cell × E_{DFT_{PEG(g)}}(dissociated)) = E_{DFT_{PEG}}(dissociated)$ PEG_chain * (interaction) 4) E_{DFT} $-E_{DFT}$ $-E_{DFT}$ $+ E_{DFT}$ $= E_{DFT}$

$$\sum_{j=1}^{2} PEG^*(solvation) \qquad \left(\frac{PEG/H_2O(l)}{2} < 1ML\right)^* \qquad H_2O(l) < 1ML \qquad PEG^* \qquad DT \\ \Delta H_{max}^* = E_{DFT} \qquad + E_{DFT} \qquad + E_{DFT}$$

DFT PEG_chain * (interaction) PEGPEG_head * (adsorption) 6) PEG^{*} (solvation)

 E_{DFT} E_{DFT} PEG_{head}* (adsorption) PEG_head * (adsorption) # of PEG* the total number of PEG* in the unit cell 7) E_{DFT} E_{DFT}

PEG_{chain}* (interaction) PEG_chain * (interaction) *# of monomer* the total number of the PEG * monomer in the unit cell 8) ⁹⁾ the total hydrogen bond number between PEG* and surrounding H₂O(l) molecules

 $E_{DFT}_{PEG^*(solvation)}$ E_{DFT} PEG^{*} (solvation)

the total number of the oxygen atom in PEG^{*} in the unit cell 10) # of 0 in PEG*

¹¹⁾ the surface coverage of PEG* in the unit cell ¹²⁾ the surface coverage of H_2O^* in the unit cell ¹³⁾ the total number of desorbed H_2O /unit cell during PEG adsorption

ps	$ \begin{array}{c} E_{DFT} \\ \left(PEG/H_2 O(l) < 1ML \right) \\ (eV) \end{array} $	$E_{DFT} + \frac{H_2O(l) < 1ML}{(eV)} $	$E_{DFT_{PEG(g)}}$ (undissociated) (eV)	$E_{DFT}_{PEG}^{*}$ (eV)		$E_{DFT_{PEG}}$ (dissociated) (eV) ¹	$\begin{bmatrix} E_{DFT_{PEG(g)}} \\ (\text{dissociated}) \\ (eV)^{2} \end{bmatrix}$	$E_{DFT}_{PEG_head} * (adsorption) \\ (eV)^{3)}$	$\begin{array}{c} E_{DFT} \\ PEG_chain \\ (eV)^{4)} \end{array}$
1	-1836.97	-1182.47	-212.28	-1166.94	-521.80	-620.68	-206.36	-6.70	-1.59
2	-1835.99	-1182.31	-212.28	-1167.22	-521.95	-620.82	-206.17	-6.10	-2.32
3	-1837.11	-1182.99	-212.28	-1167.26	-521.99	-620.54	-206.25	-6.63	-1.80
4	-1838.33	-1184.46	-212.28	-1168.06	-522.03	-621.32	-206.43	-7.15	-2.03
5	-1837.96	-1184.13	-212.28	-1168.10	-521.94	-621.51	-206.45	-7.15	-2.16
6	-1837.80	-1183.25	-212.28	-1168.07	-521.91	-621.48	-206.55	-7.47	-1.83
7	-1837.92	-1183.60	-212.28	-1168.00	-521.82	-621.53	-206.49	-7.26	-2.07
8	-1838.59	-1184.11	-212.28	-1167.95	-521.98	-621.67	-206.48	-6.90	-2.23
9	-1838.79	-1184.97	-212.28	-1167.96	-521.67	-623.58	-206.52	-5.42	-4.03
10	-1838.88	-1184.90	-212.28	-1168.01	-521.66	-621.72	-206.58	-7.52	-1.99
Average	-1837.84	-1183.72	-212.28	-1167.76	-521.87	-621.49	-206.43	-6.83 ± 0.62	-2.21 ± 0.64

Table S5. Data for 0.75 ML PEG-5* on TiO₂(101)

Table S5. continued

ps	$E_{DFT}_{PEG \ ^{*}(solvation)}_{(eV)^{5)}}$	$\frac{\Delta H_{PEG}^{}*}{(\mathrm{eV})^{6)}}$	E_{DFT} $PEG_head * (adsorption)$ $/# of PEG$ $(eV/PEG)^{7)}$	<i>E_{DFT}</i> <i>PEG_chain</i> *(<i>interaction</i>) /# of monomer (eV/monomer) ⁸⁾	# _H - bond ⁹)	E_{DFT} $PEG^{*} (solvation)$ $/# of O in PEG^{*}$ $(eV/monomer)^{10}$	$\theta_{PEG^{*}}$ (ML) ¹¹⁾	$\theta_{H_20^*}$ (ML) ¹²⁾	N ¹³⁾
1	-9.36	-17.65	-2.23	-0.11	20	-0.52	0.75	0.25	3
2	-8.41	-16.83	-2.03	-0.15	19	-0.47	0.75	0.25	3
3	-8.86	-17.28	-2.21	-0.12	20	-0.49	0.75	0.25	3
4	-7.84	-17.02	-2.38	-0.14	15	-0.44	0.75	0.25	3
5	-7.66	-16.98	-2.38	-0.14	15	-0.43	0.75	0.25	3
6	-8.40	-17.70	-2.49	-0.12	17	-0.47	0.75	0.25	3
7	-8.14	-17.47	-2.42	-0.14	16	-0.45	0.75	0.25	3
8	-8.51	-17.63	-2.30	-0.15	16	-0.47	0.75	0.25	3
9	-7.53	-16.97	-1.81	-0.27	16	-0.42	0.75	0.25	3
10	-7.62	-17.13	-2.51	-0.13	15	-0.42	0.75	0.25	3
Average	-8.23 ± 0.56	-17.27 ± 0.31	-2.28	-0.15	16.90	-0.46	0.75	0.25	3.00

 $\overline{E_{DFT}} \left(\frac{PEG/H_2^{O(l)} < 1ML}{2} \right)^*$ ¹⁾ Single point calculation for dissociated PEG where the structure and unit cell are from E_{new}

		L_{DFT}			
²⁾ Single point calculation for	dissociated PEG where the stru	cture is from	$\left(\frac{PEG/H}{2^{O(l)}} < 1ML\right)^*$	in a large unit cell (no intera	actions between PEG)
E _{DFT} =	$= E_{DFT} - E_{D}$	FT – E	E _{DFT} (undiss	sociated) – ΔE_{DFT}	
3) PEG_head * (adsorption)	$\left(\frac{PEG/H_2O(l)}{1ML}\right)^*$	$H_2^{O(l)} < 1ML^*$	PEG(g)	PEG_chain	[*] (interaction)

 $= E_{DFT_{PEG}}(dissociated) - the total number of dissociated PEG^* in the unit cell \times E_{DFT_{PEG(g)}}(dissociated))$ E_{DFT} 4) PEG_chain * (interaction) E_{DFT} $= E_{DFT}$ $-E_{DFT}$ $-E_{DFT}_{PEG*} + E_{DFT*}$ $(PEG/H_2O(l) < 1ML)^*$ PEG * (solvation) $H_2^{O(l)} < 1ML^*$ 5) $+ E_{DFT}_{PEG^*(solvation)}$ $\Delta H_{PEG^*} = E_{DFT}$ $+ E_{DFT}$ PEG_chain * (interaction) 6) PEG_head * (adsorption) E_{DFT} E_{DFT} PEG_{head} * (adsorption) PEG_head * (adsorption) the total number of PEG * in the unit cell # of PEG* 7) E_{DFT} E_{DFT} PEG_{chain}* (interaction) PEG_chain * (interaction) # of monomer the total number of the PEG* monomer in the unit cell 8) ⁹⁾ the total hydrogen bond number between PEG* and surrounding H₂O(1) molecules E_{DFT} PEG^{*} (solvation) PEG* (solvation) 10) # of 0 in PEG* the total number of the oxygen atom in PEG^* in the unit cell

¹¹⁾ the surface coverage of PEG* in the unit cell

 $^{12)}$ the surface coverage of H_2O^* in the unit cell

¹³⁾ the total number of desorbed H₂O/unit cell during PEG adsorption

ps	$E_{DFT} \begin{pmatrix} PEG/H_2O(l) < 1ML \end{pmatrix} \\ (eV) \end{pmatrix}$	$E_{DFT} + \frac{H_2^{O(l)} < 1ML}{(eV)}^*$	E _{DFT_{PEG(g)} (undissociated) (eV)}	$E_{DFT}_{PEG} * $ (eV)	E_{DFT} * (slab) (eV)	$E_{DFT_{PEG}}$ (dissociated) (eV) ¹⁾	$E_{DFT_{PEG}(g)}$ (dissociated) $(eV)^{2}$	$E_{DFT}_{PEG_head} \stackrel{*}{} (adsorption) \\ (eV)^{3)}$	$\begin{array}{c} E_{DFT} \\ PEG_chain \\ (eV)^{4)} \end{array}$
1	-1888.53	-1022.83	-212.28	-1383.55	-522.03	-835.67	-212.15	-7.96	-4.44
2	-1889.34	-1023.66	-212.28	-1383.59	-521.88	-835.73	-212.30	-7.65	-4.93
3	-1889.55	-1023.89	-212.28	-1384.15	-522.16	-835.80	-212.34	-8.14	-4.71
4	-1889.23	-1023.31	-212.28	-1383.59	-521.81	-835.79	-212.29	-8.43	-4.21
5	-1889.01	-1022.78	-212.28	-1383.40	-521.48	-835.85	-212.31	-8.58	-4.20
6	-1889.71	-1022.99	-212.28	-1383.80	-521.81	-835.95	-212.24	-8.78	-4.06
7	-1889.36	-1022.67	-212.28	-1383.73	-521.85	-835.92	-212.13	-8.41	-4.34
8	-1889.37	-1023.16	-212.28	-1383.84	-521.93	-835.98	-212.19	-8.43	-4.34
9	-1890.06	-1023.69	-212.28	-1383.84	-521.86	-836.00	-212.25	-8.64	-4.20
10	-1889.66	-1023.92	-212.28	-1383.92	-521.91	-836.25	-212.25	-8.61	-4.27
Average	-1889.38	-1023.29	-212.28	-1383.74	-521.87	-835.90	-212.24	-8.36 ± 0.33	-4.37 ± 0.25

Table S6. Data for 1.00 ML PEG-5* on TiO₂(101)

Table S6. continued

ps	$\begin{bmatrix} E_{DFT} \\ PEG^* (solvation) \\ (eV)^{5} \end{bmatrix}$	$\frac{\Delta H_{PEG}}{(eV)^{6}}$	E _{DFT} PEG_head * (adsorption) /# of PEG (eV/PEG) ⁷⁾	E _{DFT} PEG_chain * (interaction) /# of monomer (eV/monomer) ⁸⁾	# _{H - bond9)}	E_{DFT} PEG * (solvation) /# of O in PEG* (eV/monomer) ¹⁰	$\theta_{PEG^{*}}$ (ML) ¹¹⁾	$\theta_{H_20^*}$ (ML) ¹²⁾	N ¹³⁾	
----	--	-----------------------------------	--	--	-------------------------	--	---	--	------------------	--

1	-4.17	-16.56	-1.99	-0.22	13	-0.17	1.00	0.00	4
2	-3.96	-16.54	-1.91	-0.25	12	-0.16	1.00	0.00	4
3	-3.67	-16.52	-2.03	-0.24	11	-0.15	1.00	0.00	4
4	-4.14	-16.78	-2.11	-0.21	13	-0.17	1.00	0.00	4
5	-4.31	-17.09	-2.14	-0.21	12	-0.18	1.00	0.00	4
6	-4.74	-17.59	-2.20	-0.20	13	-0.20	1.00	0.00	4
7	-4.80	-17.55	-2.10	-0.22	13	-0.20	1.00	0.00	4
8	-4.31	-17.08	-2.11	-0.22	13	-0.18	1.00	0.00	4
9	-4.39	-17.24	-2.16	-0.21	13	-0.18	1.00	0.00	4
10	-3.74	-16.61	-2.15	-0.21	12	-0.16	1.00	0.00	4
Average	-4.22 ± 0.36	-16.96 ± 0.39	-2.09	-0.22	12.50	-0.18	1.00	0.00	4.00

 $\overline{E}_{DFT} \left(\frac{PEG/H_2 O(l)}{(PEG/H_2 O(l) < 1ML)} \right)^*$ ¹⁾ Single point calculation for dissociated PEG where the structure and unit cell are from

²⁾ Single point calculation for dissociated PEG where the structure is from $E_{DFT} = E_{DFT} = E_{DFT} + E_{DF$

 E_{DFT} PEG_{chain}^{*} (interaction) $= E_{DF}$ $E_{DFT_{PEG}}(dissociated) - the total number of dissociated PEG* in the unit cell × E_{DFT_{PEG}(g)}(dissociated))$ 4)

 E_{DFT} $= E_{DFT} (PEG/H_2O(l) < 1ML)^* - E_{DFT} + E_{O(l)} < 1ML^* - E_{DFT} + E$ PEG * (solvation) 5) $\Delta H_{PEG^*} = E_{DFT}_{PEG_head^*(adsorption)}$ $+ E_{DFT}_{PEG_chain}^{*}$ (interaction) $+ E_{DFT}$ 6) PEG^{*} (solvation) E_{DFT} E_{DFT} PEG_head * (adsorption) PEG_{head}* (adsorption)

the total number of PEG^{*} in the unit cell # of PEG* 7) E_{DFT} E_{DFT} PEG_{chain}* (interaction) PEG_chain * (interaction)

of monomer the total number of the PEG* monomer in the unit cell 8)

 $^{9)}$ the total hydrogen bond number between PEG* and surrounding $\mathrm{H_{2}O}(l)$ molecules

 E_{DFT} E_{DFT} PEG^{*} (solvation) PEG^{*} (solvation)

the total number of the oxygen atom in PEG^* in the unit cell 10) # of O in PEG*

¹¹⁾ the surface coverage of PEG* in the unit cell

¹²⁾ the surface coverage of H_2O^* in the unit cell

¹³⁾ the total number of desorbed H₂O/unit cell during PEG adsorption

Fig. S4. Molecular configurations of PEG-5* on $TiO_2(101)$ at 1.00 ML at 10 ps of AIMD simulation. The H₂O(l) molecules are deleted for a clarity. The dotted lines with arrows represent hydrogen bonding of the O species of PEG-5* with surface OH* of $TiO_2(101)$.

Fig. S5. Side views of the snapshots of $(PEG - 5/H_2O(l) < 1ML)^*$ (10 ps) on TiO₂(101) where the PEG* coverage is (a) 0.25, (b) 0.50, (c) 0.75, and (d) 1.00 ML. The dotted lines represent a space up to 15 Å above the surface. Bulk liquid water molecules are described using a simplified form. Light blue, Ti; red, O; blue, O of H₂O*; light green, H of H₂O*; purple, O of PEG*; brown, C; white, H.

Fig. S6. PEG* coverage dependent of (a) the local H_2O density in space up to 15 Å from the surface and (b) normalized number of the PEG*– H_2O hydrogen bond.

Section S5. MD simulation results for PEG-3, PEG-5, PEG-10 and PEG-15 adsorption

Classical MD simulations for PEG-3, PEG-5, PEG-10 and PEG-15 adsorption on TiO₂(101) surface have been performed. Figs. S7-S9 are representative snapshots showing the brush type adsorption process of each polymer chain. Computed $T\Delta S_{PEG}^{**}$ values are summarized in Fig. S10 and Table S7.

Fig. S7. Top and side views of PEG-3 adsorption on $TiO_2(101)$ surface. (a) desorbed state and (b) adsorbed state.

Fig. S8. Top and side views of PEG-5 adsorption on $TiO_2(101)$ surface. (a) desorbed state and (b) adsorbed state.

Fig. S9. Top and side views of PEG-10 adsorption on TiO₂(101) surface. (a) desorbed state and (b) adsorbed state.

Table. S7. Estimated average and standard deviation of $T\Delta S_{PEG}^{*}$ of PEG chain of varying degree of polymerization

Degree of polymerization	Average (eV)	Standard deviation (eV)
PEG-3	-2.12	0.24
PEG-5	-2.35	0.07
PEG-10	-3.29	0.17
PEG-15	-5.28	0.29

Section S6. ΔG_{ads} for PEG-5*

Coverage (ML)	$\begin{bmatrix} E_{DFT} \\ PEG_{head}^* (adsorption \\ (eV)^{1} \end{bmatrix}$	E _{DFT} PEG_chain [*] (interaction) (eV) ¹⁾	E_{DFT} PEG * (solvation) (eV) ¹⁾	ΔH_{PEG^*} (eV) ¹⁾	$\begin{array}{c} \Delta ZPE_{PEG} *\\ (eV) \end{array}$	$\begin{vmatrix} T\Delta S_{PEG}^{*} \\ (eV)^{2} \end{vmatrix}$	N 1),3)	H ₂ O [*] desorption energy (eV/H ₂ O) ⁴)	Total H_2O^* desorption energy $(eV)^{5)}$	ΔG_{ads} (eV) ⁶⁾
0.25	-1.84	-0.03	-5.08	-6.95	0.17		1	0.08	0.08	-4.58
0.50	-3.92	-0.60	-8.62	-13.14	0.34		2	0.08	0.16	-8.41
0.75	-6.83	-2.21	-8.23	-17.27	0.50		3	0.08	0.24	-10.18
1.00	-8.36	-4.37	-4.22	-16.96	0.67		4	0.08	0.32	-7.50
		ΔH $* = E_{DFT}$	+	EDET		$+ E_{DFT}$				

Table S8. Data for ΔG_{ads} of PEG-5* on TiO₂(101)

¹⁾ the values are from Tables S3-S6 in the SI / $PEG^* = DFI PEG_head^*(adsorption) PEG_chain^*(interaction) PEG^*(solvation)$

²⁾ the values are from Section S4 in the SI.

³⁾ the total number of desorbed H₂O^{*}/unit cell during PEG adsorption

⁴⁾ the values are from Section S2 in the SI.

⁵⁾ Total H₂O^{*} desorption energy = $n \times H_2O^*$ desorption energy

 $\Delta G_{ads} = \Delta H_{PEG^*} + \Delta ZPE_{PEG^*} - \Delta S_{PEG^*} + Total H_2O^* desorption energy$

Table S9. Surface density of PEG-5* on the $TiO_2(101)$ surfaces

PEG-5* coverage (ML)	Density of PEG-5* (/nm ²)
0.25	1.28
0.50	2.56
0.75	3.84
1.00	5.12

Section S7. AIMD simulation results for PEG-3*, PEG-10*, and PEG-15*

Fig. S12. Front and side views of the snapshots of $(PEG/H_2O(l) < 1ML)^*$ (10 ps) on TiO₂(101). (a) PEG-3*, (b) PEG-10*, and (c) PEG-15*. The bulk liquid water is shown as a simplified. Light blue, Ti; red, O; blue, O of H₂O*; light green, H of H₂O*; purple, O of PEG*; brown, C; white, H.

ps	$\begin{bmatrix} E_{DFT} \\ (PEG/H_2O(l) < 1ML) \\ (eV) \end{bmatrix}$	$E_{DFT} + \frac{H_2O(l) < 1ML}{(eV)} $	$E_{DFT_{PEG(g)}}$ (undissociated) (eV)	$E_{DFT}_{PEG}^{*}$ (eV)	$ \begin{array}{c} E_{DFT} \\ (slab) \\ (eV) \end{array} $	$E_{DFT_{PEG}}$ (dissociated) (eV) ¹)	$E_{DFT_{PEG(g)}}$ (dissociated) (eV) ²)	$E_{DFT}_{PEG_head} * (adsorption) \\ (eV)^{3)}$	E _{DFT} PEG_chain * (interaction) (eV) ⁴⁾
1	-1506.64	-1368.36	-133.03	-659.28	-524.27	-127.12	-127.10	-1.97	-0.01
2	-1506.56	-1368.06	-133.03	-659.46	-524.37	-127.10	-127.08	-2.05	-0.02
3	-1506.53	-1368.13	-133.03	-659.63	-524.29	-127.17	-127.14	-2.29	-0.02
4	-1506.84	-1368.48	-133.03	-659.80	-524.56	-127.12	-127.10	-2.19	-0.02
5	-1507.42	-1368.72	-133.03	-659.59	-524.63	-127.08	-127.06	-1.91	-0.02
6	-1507.38	-1369.16	-133.03	-659.64	-524.36	-127.10	-127.11	-2.25	0.01
7	-1507.31	-1369.07	-133.03	-659.34	-524.58	-126.93	-126.92	-1.73	-0.01
8	-1507.23	-1368.83	-133.03	-659.70	-524.20	-127.11	-127.09	-2.45	-0.02
9	-1507.27	-1368.97	-133.03	-659.54	-524.49	-127.06	-127.05	-2.01	-0.02
10	-1507.18	-1368.85	-133.03	-659.63	-524.54	-127.06	-126.95	-1.96	-0.10
Average	-1507.04	-1368.66	-133.03	-659.56	-524.43	-127.08	-127.06	-2.08 ± 0.20	-0.02 ± 0.03

Table S10. Data for 0.25 ML PEG-3* on $TiO_2(101)$

Table S10. continued

ps	$E_{DFT}_{PEG \ ^{*}(solvation)} \\ (eV)^{5)}$	$\begin{array}{c} \Delta H_{PEG} ^{*} \\ (\mathrm{eV})^{6)} \end{array}$	E _{DFT} PEG_head * (adsorption) /# of PEG (eV/PEG) ⁷⁾	E _{DFT} PEG_chain * (interaction) /# of monomer (eV/monomer) ⁸⁾	# _{H - bond⁹)}	$E_{DFT}_{PEG} * (solvation) /# of O in PEG* (eV/monomer)^{10}$	θ_{PEG^*} (ML) ¹¹⁾	$\theta_{H_20^*}$ (ML) ¹²⁾	N ¹³⁾
----	--	--	--	--	------------------------------------	---	---	--	------------------

1	-3.28	-5.26	-1.97	0.00	6	-0.82	0.25	0.75	1
2	-3.40	-5.47	-2.05	-0.01	7	-0.85	0.25	0.75	1
3	-3.05	-5.37	-2.29	-0.01	5	-0.76	0.25	0.75	1
4	-3.12	-5.33	-2.19	-0.01	5	-0.78	0.25	0.75	1
5	-3.74	-5.67	-1.91	-0.01	7	-0.94	0.25	0.75	1
6	-2.95	-5.19	-2.25	0.00	5	-0.74	0.25	0.75	1
7	-3.47	-5.21	-1.73	0.00	6	-0.87	0.25	0.75	1
8	-2.90	-5.37	-2.45	-0.01	5	-0.73	0.25	0.75	1
9	-3.25	-5.27	-2.01	-0.01	6	-0.81	0.25	0.75	1
10	-3.24	-5.30	-1.96	-0.03	6	-0.81	0.25	0.75	1
Average	-3.24 ± 0.24	-5.34 ± 0.13	-2.08	-0.01	5.80	-0.81	0.25	0.75	1.00

 $\overline{E_{DFT}}_{\left(PEG/H_{2}O(l) < 1ML\right)}^{*}$ ¹⁾ Single point calculation for dissociated PEG where the structure and unit cell are from

²⁾ Single point calculation for dissociated PEG where the structure is from $E_{DFT} = E_{DFT} = E_{DFT} + E_{DF$

 E_{DFT} $E_{DFT_{PEG}}(dissociated) - the total number of dissociated PEG* in the unit cell × E_{DFT_{PEG}(g)}(dissociated))$ PEG_chain * (interaction) 4)

 E_{DFT} $= E_{DFT} (PEG/H_2O(l) < 1ML)^* - E_{DFT} + E_{O(l)} < 1ML^* - E_{DFT} + E$ PEG * (solvation) 5) $\Delta H_{PEG^{*}} = E_{DFT}_{PEG_head^{*}(adsorption)}$ $+ E_{DFT}$ $+ E_{DFT}$ 6) PEG_chain * (interaction) PEG * (solvation)

 E_{DFT} E_{DFT} PEG_{head}* (adsorption) PEG_head * (adsorption) the total number of PEG^{*} in the unit cell # of PEG* 7)

 E_{DFT} E_{DFT} PEG_{chain}* (interaction) PEG_chain * (interaction)

of monomer the total number of the PEG* monomer in the unit cell 8)

⁹⁾ the total hydrogen bond number between PEG* and surrounding H₂O(l) molecules

 E_{DFT} E_{DFT} PEG^{*} (solvation) PEG^{*} (solvation)

the total number of the oxygen atom in PEG^{*} in the unit cell 10) # of O in PEG*

¹¹⁾ the surface coverage of PEG* in the unit cell

¹²⁾ the surface coverage of H_2O^* in the unit cell

¹³⁾ the total number of desorbed H₂O/unit cell during PEG adsorption

Table S11. Data for 0.25 ML PEG-10* on TiO₂(101)

ps	$\begin{bmatrix} E_{DFT} \\ (PEG/H_2^{O(l)} < 1ML) \\ (eV) \end{bmatrix}$	$E_{DFT} + \frac{H_2O(l)}{(eV)} < 1ML^*$	$E_{DFT_{PEG(g)}}$ (undissociated) (eV)	$E_{DFT}_{PEG}^{*}$ (eV)	$\begin{bmatrix} E_{DFT} \\ (slab) \\ (eV) \end{bmatrix}$	$E_{DFT_{PEG}}$ (dissociated) (eV) ¹⁾	$\begin{bmatrix} E_{DFT_{PEG}(g)} \\ (\text{dissociated}) \\ (eV)^{2} \end{bmatrix}$	$E_{DFT}_{PEG_head}^{*} (adsorption) \\ (eV)^{3)}$	$E_{DFT}_{PEG_chain * (interaction) \\ (eV)^{4)}}$
1	-2463.75	-2042.25	-410.45	-937.18	-524.36	-404.76	-404.66	-2.27	-0.10
2	-2463.76	-2042.59	-410.45	-937.44	-524.61	-404.85	-404.76	-2.30	-0.09
3	-2465.23	-2043.20	-410.45	-937.41	-524.81	-404.79	-404.64	-2.00	-0.15
4	-2465.23	-2041.91	-410.45	-937.44	-524.83	-404.85	-404.66	-1.96	-0.20
5	-2465.14	-2042.94	-410.45	-937.26	-524.65	-404.74	-404.63	-2.05	-0.11
6	-2465.09	-2043.09	-410.45	-937.31	-524.77	-404.74	-404.62	-1.98	-0.11
7	-2464.50	-2042.28	-410.45	-937.28	-524.75	-404.71	-404.62	-2.00	-0.09
8	-2465.32	-2043.81	-410.45	-937.23	-524.61	-404.75	-404.65	-2.07	-0.10
9	-2465.81	-2044.26	-410.45	-937.21	-524.66	-404.74	-404.62	-1.99	-0.12
10	-2465.26	-2043.70	-410.45	-937.43	-524.81	-404.79	-404.67	-2.05	-0.12
Average	-2464.91	-2043.00	-410.45	-937.32	-524.69	-404.77	-404.65	-2.07 ± 0.11	-0.12 ± 0.03

Table S11. continued

ps	$E_{DFT} \\ PEG * (solvation) \\ (eV)^{5)}$	$\begin{array}{c} \Delta H_{PEG^{*}} \\ (\mathrm{eV})^{6)} \end{array}$	E _{DFT} PEG_head * (adsorption) /# of PEG (eV/PEG) ⁷⁾	E _{DFT} PEG_chain * (interaction) /# of monomer (eV/monomer) ⁸⁾	# _{H - bond} 9)	E_{DFT} PEG * (solvation) /# of O in PEG* (eV/monomer) ¹⁰⁾	θ_{PEG^*} (ML) ¹¹⁾	$\theta_{H_20^*}$ (ML) ¹²⁾	N ¹³⁾
1	-8.68	-11.05	-2.27	-0.01	15	-0.79	0.25	0.75	1
2	-8.33	-10.72	-2.30	-0.01	16	-0.76	0.25	0.75	1
3	-9.43	-11.59	-2.00	-0.02	15	-0.86	0.25	0.75	1
4	-10.71	-12.87	-1.96	-0.02	16	-0.97	0.25	0.75	1
5	-9.58	-11.75	-2.05	-0.01	15	-0.87	0.25	0.75	1
6	-9.45	-11.55	-1.98	-0.01	15	-0.86	0.25	0.75	1
7	-9.67	-11.77	-2.00	-0.01	14	-0.88	0.25	0.75	1
8	-8.89	-11.06	-2.07	-0.01	12	-0.81	0.25	0.75	1
9	-9.00	-11.10	-1.99	-0.01	13	-0.82	0.25	0.75	1
10	-8.94	-11.11	-2.05	-0.01	13	-0.81	0.25	0.75	1
Average	-9.27 ± 0.63	-11.46 ± 0.58	-2.07	-0.01	14.40	-0.84	0.25	0.75	1.00

 $\overline{E_{DFT}} \left(\frac{PEG/H_2 O(l)}{200} < 1ML \right)^*$ ¹⁾ Single point calculation for dissociated PEG where the structure and unit cell are from

 $E_{DFT}^{(2)}$ Single point calculation for dissociated PEG where the structure is from $E_{DFT}^{(2)} = E_{DFT}^{(2)} - E_{DFT}^{(2)} - E_{DFT}^{(2)} + E_{DFT}^{(2)} - E_{DFT}^{(2)} + E_{DFT}^{(2)} - E_{DFT}^{(2)} + E_{DFT}^{(2)} - E_{DFT}^{(2)} + E_{$

 $= E_{DFT_{PEG}}(dissociated) - the total number of dissociated PEG^* in the unit cell \times E_{DFT_{PEG}(g)}(dissociated))$ $E_{DFT} = E_{DFT}$ $E_{DFT} = E_{DF}$ 4)

$$E_{DFT} = E_{DFT} + E_{D$$

5) PEG (solvation)
$$(PEG/H_2O(l) < 1ML)$$
 $H_2O(l) < 1ML$ PEG

 $\Delta H_{PEG^*} = E_{DFT}_{PEG_head^*(adsorption)} + E_{DFT}_{PEG_chain^*(interaction)} + E_{DFT}_{PEG^*(solvation)}$

E	PFT PEG _{head} * (adsorption)	E _{DFT} PEG_head * (adsorption)
7)	# of PEG *	the total number of PEG* in the unit cell
E	OFT PEG _{chain} * (interaction	$E_{DFT}_{PEG_chain}^{*}$ (interaction)
8)	# of monomer	the total number of the PEG * monomer in the unit cell
⁹⁾ the	e total hydrogen bond i	number between PEG* and surrounding H ₂ O(l) molecules
E	DFT PEG [*] (solvation) –	E_{DFT} PEG * (solvation)
10)	$\# of O in PEG^* t$	he total number of the oxygen atom in PEG st in the unit cell

¹¹⁾ the surface coverage of PEG* in the unit cell ¹²⁾ the surface coverage of H_2O^* in the unit cell ¹³⁾ the total number of desorbed H_2O /unit cell during PEG adsorption

Table S12. Data for 0.25 ML PEG-15* on TiO₂(101)

ps	$E_{DFT} (PEG/H_2O(l) < 1ML) $ (eV)	$E_{DFT} + \frac{H_2^{O(l)} < 1ML}{(eV)}^*$	$E_{DFT_{PEG(g)}}$ (undissociated) (eV)	$E_{DFT}_{PEG}^{*}$ (eV)	$ E_{DFT}_{*} (slab) (eV) $	$E_{DFT_{PEG}}$ (dissociated) (eV) ¹⁾	$E_{DFT_{PEG(g)}}$ (dissociated) (eV) ²)	E_{DFT} PEG_head * (adsorption) (eV) ³⁾	$E_{DFT} \\ PEG_chain * (interaction) \\ (eV)^{4)}$
1	-3088.16	-2464.39	-608.68	-1135.29	-524.68	-602.57	-602.41	-1.77	-0.16
2	-3090.94	-2468.54	-608.68	-1135.15	-524.71	-602.53	-602.42	-1.64	-0.12
3	-3090.71	-2467.12	-608.68	-1135.77	-524.86	-602.95	-602.82	-2.09	-0.14
4	-3091.52	-2468.84	-608.68	-1135.64	-524.69	-602.85	-602.73	-2.15	-0.12
5	-3090.95	-2467.75	-608.68	-1135.70	-524.49	-603.15	-602.99	-2.37	-0.17
6	-3090.80	-2468.01	-608.68	-1135.67	-524.78	-602.99	-602.76	-1.97	-0.23
7	-3092.03	-2469.03	-608.68	-1135.75	-524.87	-603.07	-602.96	-2.09	-0.11
8	-3092.21	-2469.39	-608.68	-1135.95	-524.91	-603.21	-603.06	-2.21	-0.15
9	-3091.44	-2468.11	-608.68	-1135.67	-524.59	-603.03	-602.90	-2.26	-0.14
10	-3090.82	-2468.24	-608.68	-1135.71	-524.93	-602.97	-602.84	-1.97	-0.13
Average	-3090.96	-2467.94	-608.68	-1135.63	-524.75	-602.93	-602.79	-2.05 ± 0.21	-0.15 ± 0.03

Table S12. continued

ps	E _{DFT} PEG * (solvation) (eV) ⁵)	$\frac{\Delta H_{PEG}}{(eV)^{6)}}$	E_{DFT} $PEG_head * (adsorption)$ $/# of PEG$ $(eV/PEG)^{7)}$	E _{DFT} PEG_chain * (interaction) /# of monomer (eV/monomer) ⁸⁾	# _H - bond ⁹)	E_{DFT} $PEG^{*} (solvation)$ /# of O in PEG* $(eV/monomer)^{10}$	$\theta_{PEG^{*}}$ (ML) ¹¹⁾	$\theta_{H_20^*}$ (ML) ¹²⁾	N ¹³⁾
1	-13.17	-15.10	-1.77	-0.01	21	-0.82	0.25	0.75	1
2	-11.97	-13.72	-1.64	-0.01	19	-0.75	0.25	0.75	1
3	-12.68	-14.91	-2.09	-0.01	22	-0.79	0.25	0.75	1
4	-11.74	-14.01	-2.15	-0.01	18	-0.73	0.25	0.75	1
5	-11.99	-14.52	-2.37	-0.01	18	-0.75	0.25	0.75	1
6	-11.91	-14.11	-1.97	-0.02	18	-0.74	0.25	0.75	1
7	-12.12	-14.32	-2.09	-0.01	17	-0.76	0.25	0.75	1

8	-11.77	-14.14	-2.21	-0.01	18	-0.74	0.25	0.75	1
9	-12.25	-14.65	-2.26	-0.01	21	-0.77	0.25	0.75	1
10	-11.80	-13.90	-1.97	-0.01	16	-0.74	0.25	0.75	1
Average	-12.14 ± 0.43	-14.34 ± 0.42	-2.05	-0.01	18.80	-0.76	0.25	0.75	1.00
				P					

^L DFT		
	(1

 $(PEG/H_2O(l) < 1ML)^*$ ¹⁾ Single point calculation for dissociated PEG where the structure and unit cell are from E_{DFT} $(PEG/H_2^{O(l)} < 1ML)^*$ in a large unit cell (no interactions between PEG) ²⁾ Single point calculation for dissociated PEG wh

$$E_{DFT} = E_{DFT} - E_{D$$

PEG_chain * (interaction) E_{DFT} $= E_{DFT_{PEG}}(dissociated) - the total number of dissociated PEG^* in the unit cell \times E_{DFT_{PEG}(g)}(dissociated))$ 4) PEG_chain * (interaction)

$$E_{DFT} = E_{DFT} (PEG/H_2O(l) < 1ML)^* - E_{DFT} - E_{DFT} + E_$$

 $+ E_{DFT}$ $+ E_{DFT}$ ΔH $= E_{DFT}$ PEG* PEG_head * (adsorption) 6) PEG_chain * (interaction) PEG^{*} (solvation)

 E_{DFT} E_{DFT} PEG_head * (adsorption) PEG_{head}* (adsorption)

of PEG * the total number of PEG^{*} in the unit cell 7)

 E_{DFT} E_{DFT} PEG_{chain}* (interaction) PEG chain * (interaction)

 E_{DFT}

3)

of monomer the total number of the PEG* monomer in the unit cell 8) $^{9)}$ the total hydrogen bond number between PEG* and surrounding H₂O(1) molecules

 E_{DFT} E_{DFT} PEG^{*} (solvation) PEG^{*} (solvation)

the total number of the oxygen atom in PEG^{*} in the unit cell 10) # of O in PEG*

¹¹⁾ the surface coverage of PEG* in the unit cell

¹²⁾ the surface coverage of H_2O^* in the unit cell

¹³) the total number of desorbed H₂O/unit cell during PEG adsorption

Section S8. ΔG_{ads} for PEG-3*, PEG-5*, PEG-10*, and PEG-15*

Table S13. Data for ΔG_{ads} of PEG-3* on TiO₂(101)

Coverage (ML)	# of PEG* (#/unit cell)	# of PEG* monomer (#/unit cell)	# of oxygen atom in PEG* (#/unit cell)	E _{DFT} PEG_head * (adsorption) (eV)	E _{DFT} PEG_chain [*] (interaction (eV)	E _{DFT} PEG [*] (solvation) (eV)	$\begin{array}{c} \Delta H_{PEG^{*}} \\ (eV) \end{array}$	$\begin{array}{c} \Delta ZPE_{PEG} * \\ (eV) \end{array}$	$\frac{T\Delta S_{_{PEG}*}}{(\text{eV})}$
0.05	0.20	0.60	0.80	-0.52	-0.02	-0.62	-1.16	0.00	-0.50

0.10	0.40	1.20	1.60	-0.94	-0.02	-1.30	-2.27	-0.01	-1.00
0.15	0.60	1.80	2.40	-1.29	-0.02	-2.01	-3.32	-0.01	-1.50
0.20	0.80	2.40	3.20	-1.61	-0.02	-2.71	-4.34	-0.01	-2.00
0.25	1.00	3.00	4.00	-1.92	-0.03	-3.39	-5.34	-0.02	-2.51
0.30	1.20	3.60	4.80	-2.24	-0.05	-4.02	-6.31	-0.02	-3.01
0.35	1.40	4.20	5.60	-2.59	-0.09	-4.58	-7.27	-0.02	-3.51
0.40	1.60	4.80	6.40	-2.98	-0.16	-5.07	-8.21	-0.03	-4.01
0.45	1.80	5.40	7.20	-3.43	-0.25	-5.46	-9.13	-0.03	-4.51
0.50	2.00	6.00	8.00	-3.92	-0.36	-5.75	-10.03	-0.03	-5.01
0.55	2.20	6.60	8.80	-4.46	-0.50	-5.92	-10.88	-0.04	-5.51
0.60	2.40	7.20	9.60	-5.03	-0.67	-5.99	-11.69	-0.04	-6.01
0.65	2.60	7.80	10.40	-5.63	-0.87	-5.93	-12.43	-0.04	-6.52
0.70	2.80	8.40	11.20	-6.24	-1.09	-5.77	-13.09	-0.04	-7.02
0.75	3.00	9.00	12.00	-6.83	-1.32	-5.49	-13.64	-0.05	-7.52
0.80	3.20	9.60	12.80	-7.37	-1.58	-5.11	-14.06	-0.05	-8.02
0.85	3.40	10.20	13.60	-7.84	-1.84	-4.64	-14.32	-0.05	-8.52
0.90	3.60	10.80	14.40	-8.19	-2.11	-4.09	-14.38	-0.06	-9.02
0.95	3.80	11.40	15.20	-8.38	-2.37	-3.47	-14.22	-0.06	-9.52
1.00	4.00	12.00	16.00	-8.36	-2.62	-2.81	-13.80	-0.06	-10.02

Table S13. continued

C		H ₂ O [*] desorption	Total H ₂ O*		
(MI)	Ν	energy	desorption energy	ΔG_{ads} (eV)	
(IVIL)		(eV/H_2O)	(eV)		
0.05	0.20	0.08	0.02	-0.65	
0.10	0.40	0.08	0.03	-1.24	
0.15	0.60	0.08	0.05	-1.78	
0.20	0.80	0.08	0.06	-2.29	
0.25	1.00	0.08	0.08	-2.77	
0.30	1.20	0.08	0.10	-3.23	
0.35	1.40	0.08	0.11	-3.67	
0.40	1.60	0.08	0.13	-4.10	
0.45	1.80	0.08	0.14	-4.51	
0.50	2.00	0.08	0.16	-4.89	
0.55	2.20	0.08	0.18	-5.23	
0.60	2.40	0.08	0.19	-5.52	
0.65	2.60	0.08	0.21	-5.75	
0.70	2.80	0.08	0.22	-5.89	
0.75	3.00	0.08	0.24	-5.93	
0.80	3.20	0.08	0.26	-5.83	
0.85	3.40	0.08	0.27	-5.58	
0.90	3.60	0.08	0.29	-5.13	
0.95	3.80	0.08	0.30	-4.46	
1.00	4.00	0.08	0.32	-3.52	

Coverage	# of PEG*	# of PEG*	# of oxygen	E _{DFT}	E _{DFT}	E _{DFT}	ΔH	ΔZPE	$T\Delta S$
(MI)	(#/upit.coll)	monomer	atom in PEG*	PEG_head * (adsorption)	PEG_chain * (interaction	PEG * (solvation)	PEG*	PEG*	PEG*
(IVIL)	(#/unit cen)	(#/unit cell)	(#/unit cell)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
0.05	0.20	2.00	2.20	-0.52	-0.06	-1.71	-2.30	-0.01	-0.92
0.10	0.40	4.00	4.40	-0.94	-0.08	-3.58	-4.60	-0.01	-1.84
0.15	0.60	6.00	6.60	-1.29	-0.07	-5.52	-6.89	-0.02	-2.76
0.20	0.80	8.00	8.80	-1.61	-0.07	-7.45	-9.14	-0.02	-3.68
0.25	1.00	10.00	11.00	-1.92	-0.10	-9.32	-11.34	-0.03	-4.60
0.30	1.20	12.00	13.20	-2.24	-0.18	-11.05	-13.47	-0.03	-5.52
0.35	1.40	14.00	15.40	-2.59	-0.32	-12.61	-15.52	-0.04	-6.44
0.40	1.60	16.00	17.60	-2.98	-0.53	-13.94	-17.45	-0.04	-7.36
0.45	1.80	18.00	19.80	-3.43	-0.82	-15.02	-19.27	-0.05	-8.28
0.50	2.00	20.00	22.00	-3.92	-1.21	-15.81	-20.93	-0.05	-9.20
0.55	2.20	22.00	24.20	-4.46	-1.68	-16.29	-22.43	-0.06	-10.12
0.60	2.40	24.00	26.40	-5.03	-2.24	-16.46	-23.74	-0.06	-11.04
0.65	2.60	26.00	28.60	-5.63	-2.89	-16.32	-24.84	-0.07	-11.96
0.70	2.80	28.00	30.80	-6.24	-3.62	-15.85	-25.71	-0.08	-12.88
0.75	3.00	30.00	33.00	-6.83	-4.41	-15.09	-26.33	-0.08	-13.80
0.80	3.20	32.00	35.20	-7.37	-5.26	-14.05	-26.68	-0.09	-14.72
0.85	3.40	34.00	37.40	-7.84	-6.13	-12.75	-26.72	-0.09	-15.64
0.90	3.60	36.00	39.60	-8.19	-7.03	-11.24	-26.45	-0.10	-16.56
0.95	3.80	38.00	41.80	-8.38	-7.90	-9.55	-25.83	-0.10	-17.48
1.00	4.00	40.00	44.00	-8.36	-8.74	-7.74	-24.85	-0.11	-18.40

Table S14. Data for ΔG_{ads} of PEG-5* on TiO₂(101)

Table S14. continued

C		H ₂ O [*] desorption	Total H ₂ O*	
(MI)	N	energy	desorption energy	ΔG_{ads} (eV)
(IVIL)		(eV/H_2O)	(eV)	
0.05	0.20	0.08	0.02	-1.37
0.10	0.40	0.08	0.03	-2.74
0.15	0.60	0.08	0.05	-4.09
0.20	0.80	0.08	0.06	-5.41
0.25	1.00	0.08	0.08	-6.69
0.30	1.20	0.08	0.10	-7.89
0.35	1.40	0.08	0.11	-9.00
0.40	1.60	0.08	0.13	-10.01
0.45	1.80	0.08	0.14	-10.89
0.50	2.00	0.08	0.16	-11.62
0.55	2.20	0.08	0.18	-12.19
0.60	2.40	0.08	0.19	-12.57
0.65	2.60	0.08	0.21	-12.74
0.70	2.80	0.08	0.22	-12.68

0.75	3.00	0.08	0.24	-12.37
0.80	3.20	0.08	0.26	-11.79
0.85	3.40	0.08	0.27	-10.90
0.90	3.60	0.08	0.29	-9.70
0.95	3.80	0.08	0.30	-8.15
1.00	4.00	0.08	0.32	-6.23

Table S15. Data for ΔG_{ads} of PEG-10* on TiO₂(101)

Coverage	# of PEG*	# of PEG* monomer	# of oxygen atom in PEG*	E _{DFT} PEG_head * (adsorption)	E _{DFT} PEG_chain [*] (interaction	E_{DFT} PEG * (solvation)	ΔH_{PEG^*}	ΔZPE_{PEG^*}	$T\Delta S_{PEG^*}$
(ML)	(#/unit cell)	(#/unit cell)	(#/unit cell)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
0.05	0.20	2.00	2.20	-0.52	-0.06	-1.71	-2.30	-0.01	-0.64
0.10	0.40	4.00	4.40	-0.94	-0.08	-3.58	-4.60	-0.01	-1.27
0.15	0.60	6.00	6.60	-1.29	-0.07	-5.52	-6.89	-0.02	-1.91
0.20	0.80	8.00	8.80	-1.61	-0.07	-7.45	-9.14	-0.02	-2.55
0.25	1.00	10.00	11.00	-1.92	-0.10	-9.32	-11.34	-0.03	-3.19
0.30	1.20	12.00	13.20	-2.24	-0.18	-11.05	-13.47	-0.03	-3.82
0.35	1.40	14.00	15.40	-2.59	-0.32	-12.61	-15.52	-0.04	-4.46
0.40	1.60	16.00	17.60	-2.98	-0.53	-13.94	-17.45	-0.04	-5.10
0.45	1.80	18.00	19.80	-3.43	-0.82	-15.02	-19.27	-0.05	-5.74
0.50	2.00	20.00	22.00	-3.92	-1.21	-15.81	-20.93	-0.05	-6.37
0.55	2.20	22.00	24.20	-4.46	-1.68	-16.29	-22.43	-0.06	-7.01
0.60	2.40	24.00	26.40	-5.03	-2.24	-16.46	-23.74	-0.06	-7.65
0.65	2.60	26.00	28.60	-5.63	-2.89	-16.32	-24.84	-0.07	-8.29
0.70	2.80	28.00	30.80	-6.24	-3.62	-15.85	-25.71	-0.08	-8.92
0.75	3.00	30.00	33.00	-6.83	-4.41	-15.09	-26.33	-0.08	-9.56
0.80	3.20	32.00	35.20	-7.37	-5.26	-14.05	-26.68	-0.09	-10.20
0.85	3.40	34.00	37.40	-7.84	-6.13	-12.75	-26.72	-0.09	-10.84
0.90	3.60	36.00	39.60	-8.19	-7.03	-11.24	-26.45	-0.10	-11.47
0.95	3.80	38.00	41.80	-8.38	-7.90	-9.55	-25.83	-0.10	-12.11
1.00	4.00	40.00	44.00	-8.36	-8.74	-7.74	-24.85	-0.11	-12.75

Table S15. continued

Coverage	N	H_2O^* desorption	Total H_2O^*	ΔG , $\langle D \rangle$
(ML)	IN	(eV/H ₂ O)	(eV)	$-\sigma_{ads}$ (eV)
0.05	0.20	0.08	0.02	-1.65
0.10	0.40	0.08	0.03	-3.30
0.15	0.60	0.08	0.05	-4.94
0.20	0.80	0.08	0.06	-6.55
0.25	1.00	0.08	0.08	-8.10
0.30	1.20	0.08	0.10	-9.58
0.35	1.40	0.08	0.11	-10.98

0.40	1.60	0.08	0.13	-12.27
0.45	1.80	0.08	0.14	-13.43
0.50	2.00	0.08	0.16	-14.45
0.55	2.20	0.08	0.18	-15.30
0.60	2.40	0.08	0.19	-15.96
0.65	2.60	0.08	0.21	-16.42
0.70	2.80	0.08	0.22	-16.64
0.75	3.00	0.08	0.24	-16.61
0.80	3.20	0.08	0.26	-16.31
0.85	3.40	0.08	0.27	-15.71
0.90	3.60	0.08	0.29	-14.79
0.95	3.80	0.08	0.30	-13.52
1.00	4.00	0.08	0.32	-11.88

Table S16. Data for ΔG_{ads} of PEG-15* on TiO₂(101)

Coverage	# of PEG*	# of PEG*	# of oxygen	E _{DFT}	E _{DFT}	E _{DFT}	ΔH_{*}	ΔZPE *	$T\Delta S_{*}$
(MI)	(#/upit_coll)	monomer	atom in PEG*	PEG_head * (adsorption)	PEG_chain * (interaction	PEG * (solvation)	PEG	PEG	PEG
(NIL)	(#/unit cell)	(#/unit cell)	(#/unit cell)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
0.05	0.20	3.00	3.20	-0.52	-0.10	-2.49	-3.11	-0.02	-1.15
0.10	0.40	6.00	6.40	-0.94	-0.12	-5.21	-6.27	-0.05	-2.30
0.15	0.60	9.00	9.60	-1.29	-0.11	-8.03	-9.43	-0.07	-3.45
0.20	0.80	12.00	12.80	-1.61	-0.11	-10.84	-12.56	-0.09	-4.60
0.25	1.00	15.00	16.00	-1.92	-0.16	-13.55	-15.63	-0.11	-5.75
0.30	1.20	18.00	19.20	-2.24	-0.27	-16.08	-18.59	-0.14	-6.90
0.35	1.40	21.00	22.40	-2.59	-0.47	-18.34	-21.41	-0.16	-8.05
0.40	1.60	24.00	25.60	-2.98	-0.79	-20.28	-24.05	-0.18	-9.20
0.45	1.80	27.00	28.80	-3.43	-1.23	-21.84	-26.50	-0.20	-10.35
0.50	2.00	30.00	32.00	-3.92	-1.81	-22.99	-28.72	-0.23	-11.50
0.55	2.20	33.00	35.20	-4.46	-2.52	-23.70	-30.67	-0.25	-12.65
0.60	2.40	36.00	38.40	-5.03	-3.37	-23.95	-32.34	-0.27	-13.80
0.65	2.60	39.00	41.60	-5.63	-4.34	-23.73	-33.70	-0.29	-14.95
0.70	2.80	42.00	44.80	-6.24	-5.43	-23.06	-34.73	-0.32	-16.10
0.75	3.00	45.00	48.00	-6.83	-6.62	-21.95	-35.40	-0.34	-17.25
0.80	3.20	48.00	51.20	-7.37	-7.89	-20.43	-35.69	-0.36	-18.40
0.85	3.40	51.00	54.40	-7.84	-9.20	-18.55	-35.59	-0.38	-19.55
0.90	3.60	54.00	57.60	-8.19	-10.54	-16.34	-35.07	-0.41	-20.70
0.95	3.80	57.00	60.80	-8.38	-11.86	-13.89	-34.12	-0.43	-21.85
1.00	4.00	60.00	64.00	-8.36	-13.12	-11.26	-32.74	-0.45	-23.00

Table S16. continued

C		H ₂ O [*] desorption	Total H ₂ O*	
(MI)	N	energy	desorption energy	ΔG_{ads} (eV)
(INL)		(eV/H_2O)	(eV)	. ,

0.05	0.20	0.08	0.02	-1.97
0.10	0.40	0.08	0.03	-3.98
0.15	0.60	0.08	0.05	-6.00
0.20	0.80	0.08	0.06	-7.99
0.25	1.00	0.08	0.08	-9.91
0.30	1.20	0.08	0.10	-11.73
0.35	1.40	0.08	0.11	-13.40
0.40	1.60	0.08	0.13	-14.91
0.45	1.80	0.08	0.14	-16.21
0.50	2.00	0.08	0.16	-17.29
0.55	2.20	0.08	0.18	-18.10
0.60	2.40	0.08	0.19	-18.63
0.65	2.60	0.08	0.21	-18.84
0.70	2.80	0.08	0.22	-18.72
0.75	3.00	0.08	0.24	-18.25
0.80	3.20	0.08	0.26	-17.40
0.85	3.40	0.08	0.27	-16.15
0.90	3.60	0.08	0.29	-14.49
0.95	3.80	0.08	0.30	-12.40
1.00	4.00	0.08	0.32	-9.87

Fig. S13. Coverage-dependent ΔG_{ads} for PEG-5* on TiO₂(101). The black dots represent the data points from Fig. 11 in the main text, while the red line is the data obtained using the fitting lines in Fig. 4 in the main text.

References

S1. M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald and A. N. Syverud, J. Phys. Chem. Ref. Data, Suppl., 1985, 14, 1-926.

S2. Y. A. Zhu, D. Chen, X. G. Zhou and W. K. Yuan, Catal. Today, 2009, 148, 260-267.

S3. G. Henkelman, B. P. Uberuaga and H. Jónsson, J. Chem. Phys., 2000, 113, 9901-9904.