SUPPORTING INFORMATION

Fe(III)-carboxythiolate layered Metal-Organic Frameworks with potential interest as active materials for rechargeable alkali-ion batteries

Nusik Gedikoglu,^{a‡} Pablo Salcedo-Abraira,^{a‡} Long H.B. Nguyen,^{b,d} Nathalie Guillou,^c Nicolas Dupré,^a Christophe Payen,^a Nicolas Louvain,^{b,d} Lorenzo Stievano,^{b,d} Philippe Poizot,^a and Thomas Devic^a*

- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000
 Nantes, France.
- b. ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- c. Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, Université Paris Saclay, 78035 Versailles, France.

d. Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Amiens,
 France

1. Synthesis of H₄DSBDC

2,5-disulfhydrylbenzene-1,4-dicarboxylic acid (H_4DSBDC) was synthesized based on the procedure published by Vial et al.¹

¹H NMR (300MHz, DMSO-d6): δ (ppm) = 8.03 (s, 2H, Ar-H); 13C NMR (500MHz, DMSO-d6): δ (ppm) = 166.67, 133.16, 133.14, 130.00.

FTIR (Diamond-ATR, cm⁻¹): 2958 (m, b), 2863 (m, b), 2815 (m, b), 2646 (m), 2545 (m), 2506 (m), 1685 (vs), 1474 (m), 1409 (s), 1349 (w), 1295 (m), 1251 (s), 1148 (w), 1094 (w), 974 (w), 925 (w), 904 (m), 782 (m), 635 (m), 554 (w), 510 (w), 435 (w);

MS (ESI, m/z): 229 (M-H-, 100%).

Elemental analysis calculated for C₈H₆O₄S₂: C, 41.72; H, 2.63; S, 27.85. Found: C, 41.77; H, 2.59; S, 27.69.

2. Chemical analysis of the MOFs

The purity of each phase was assessed by a combination of elemental analysis (C, H, S) and ICP-AES (Fe, Na, K). Values are given in wt%, with their standard deviation based on multiple analyses

(DMA){Fe(DSBDC)}: theo. C 36.59, H 3.07, N 4.26, S 19.54, O 19.50, Fe 17.01; exp. C 36.4 \pm 0.1, H 3.06 \pm 0.01, N 4.59 \pm 0.03, S 14.6 \pm 2.2, Fe 17.0 \pm 0.2;

Na{Fe(DSBDC)}·2.5H₂O theo. C 27.44, H 2.01, S 18.31, O 29.70, Fe 15.95, Na 6.56; exp. C 27.19 \pm 0.04, H 1.83 \pm 0.01, S 16.7 \pm 0.8, Fe 16.5 \pm 0.2, Na 6.17 \pm 0.1;

K{Fe(DSBDC)} \cdot nH₂O theo. C 26.23, H 1.92, S 17.51, O 28.39, Fe 15.24, K 10.67; exp. C 25.63 ± 0.06, H 1.63 ± 0.01, S 16.3 ± 2.8, Fe 15.9 ± 0.2, K 11.9 ± 0.5.

3. Structural characterization

Figure S1. PXRD patterns of $(DMA){Fe(DSBDC)}$, $Na{Fe(DSBDC)} \cdot 2.5H_2O$ and $K{Fe(DSBDC)} \cdot nH_2O$.

Figure S2. Rietveld plot of (DMA){Fe(DSBDC)} using the SCXRD structural model, with only refinement of the profile parameters. $R_{wp} = 0.064$ and $R_{Bragg} = 0.026$ ($\lambda_{synchrotron} = 0.671415$ Å).

Figure S3. Final Rietveld plot of Na{Fe(DSBDC)}·2.5H₂O. $R_{wp} = 0.051$ and $R_{Bragg} = 0.038$ ($\lambda_{synchrotron} = 0.72890$ Å).

Figure S4. Whole structureless powder pattern fitting of K {Fe(DSBDC)} \cdot nH₂O. $R_{wp} = 0.030$ ($\lambda_{synchrotron} = 0.671415$ Å).

Figure S5. Final Rietveld plot of Na{Fe(DSBDC)}. $R_{wp} = 0.036$ and $R_{Bragg} = 0.040$ ($\lambda_{synchrotron} = 0.72890$ Å).

Figure S6. Comparison of the PXRD patterns of Na{Fe(DSBDC)} and K{Fe(DSBDC)} ($\lambda_{CuK\alpha} = 1.5418$ Å).

Formula	$C_{10}H_{10}FeNO_4S_2$
Formula weight / g	328.16
Temperature / K	297(2)
Wavelength / Å	Μο Κα, 0.71073
Crystal dimensions / mm ³	0.03 x 0.005 x 0.005
Crystal system	Triclinic
Space group	<i>P</i> -1
<i>a</i> / Å	3.5583(4)
b / Å	8.598(2)
<i>c</i> / Å	10.405 (2)
α / °	109.90 (2)
β / \circ	92.47 (1)
γ / °	91.71 (1)
$V/Å^3$	298.71(8)
Z (molecules / cell)	1
$D_{\text{calc}} / g \ cm^{-3}$	1.824
Absorption coefficient / mm ⁻¹	1.615
F(000)	167
Theta range for data collection	3.784 to 26.331
Index ranges	$-4 \le h \le 4$
	$-10 \le k \le 10$
	$-12 \le l \le 12$
Reflections collected	8852
Independent reflections	1227
Completeness to theta = 25.24°	99.7%
Max. and min. transmission	1.0000, 0.2926
Data / restraints / parameters	1227/3/82
Goodness-of-fit on F ²	1.215
Final R indices [I>2sigma(I)]	$R_1, wR_2 = 0.1231, 0.2505$
R indices (all data)	$R_1, wR_2 = 0.1578, 0.2644$
Largest diff. peak and hole	0.908, -0.773

 Table S1. Crystallographic information of (DMA){Fe(DSBDC)}.

Compound	$Na{Fe(DSBDC)} \cdot 2.5H_2O$	Na{Fe(DSBDC)}
Crystal system	Triclinic	Triclinic
Wavelength / Å	0.72890	0.72890
Space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> / Å	3.5487(1)	3.55430(4)
<i>b</i> / Å	8.5445(2)	8.5345(1)
<i>c</i> / Å	10.0485(2)	10.2606 (1)
α / °	109.249(2)	128.8186(7)
β/°	100.613(2)	95.899(1)
γ / °	90.723(2)	91.179(2)
V / Å ³	281.85(2)	239.763(6)
R_{wp}	0.051	0.036
R _{Bragg}	0.038	0.040

Table S2. Crystallographic information of Na {Fe(DSBDC)}·2.5H₂O and Na {Fe(DSBDC)}.

Table S3. Na-O bond distances and O-Na-O bond angles in $Na{Fe(DSBDC)} \cdot 2.5H_2O$ and $Na{Fe(DSBDC)}$.

Compound	Na{Fe(DSBDC)}·2.5H ₂ O	Na{Fe(DSBDC)}				
	Bond length / Å					
Na1-O2 (-COO)	2.364(5)	2.451(4)				
Na1-O2B (-COO)	2.390(4)	2.364(4)				
Na1-O1 (-COO)		2.523(4)				
Na1-Ow1 (H ₂ O)	2.467(5)					
Bond angle / °						
O2-Na1-O2C (chain)	83.4(2)	84.9(2)				
O1-Na1-O2 (chelating carboxylate)		53.6(1)				

Figure S7. PXRD pattern of the combustion product of Na{Fe(DSBDC)}·2.5H₂O after calcination at 500°C in air. Mixture is composed of Na₃Fe(SO₄)₃ (no CIF available), Fe₂O₃ (COD 9000139), and small amounts of unidentified phase ($\lambda_{Cuk\alpha} = 1.5406$ Å).

Figure S8. PXRD pattern of the combustion product of Na{Fe(DSBDC)}·2.5H₂O after calcination at 1000°C in air. Mixture is composed of Fe₂O₃ (COD 9000139), Na₂SO₄, Na₃Fe(SO₄)₃ and possibly other phases ($\lambda_{CuK\alpha} = 1.5406$ Å).

4. ¹H liquid NMR

Figure S9. ¹H NMR spectrum of the degradation product of DMA{Fe(DSBDC)} in NaOD/D₂O. Signals at 7.84, 6.37 and 1.65 are attributed to N-H (DMA), C-H (DSBDC) and CH₃ (DMA).

5. Scanning electron microscopy and electron dispersive spectroscopy

Figure S10. Scanning Electron microscopy images of a) DMA{Fe(DSBDC)}, b) $Na{Fe(DSBDC)} \cdot 2H_2O$ and c) K{Fe(DSBDC)} $\cdot nH_2O$.

Table S4. Average atomic percentage of heavy elements (Fe, S, Na, K) in the three solids.

Compound	Fe (at %)	S (at %)	Na (at %)	K (at %)	Deduced Na,K/Fe/DSBDC
(DMA){Fe(DSBDC)}	3.30	6.88	-	-	-/1.00/1.04
$Na{Fe(DSBDC)} \cdot 2.5H_2O$	4.51	9.00	4.80	-	1.06/1.00/1.00
$K{Fe(DSBDC)}\cdot nH_2O$	5.43	10.66	-	6.20	1.14/1.00/0.98

6. Infrared spectroscopy

 $K{Fe(DSBDC)} \cdot nH_2O.$

Table S5. IR vibrational bands (in cm⁻¹) and proposed assignments for H_4DSBDC , (DMA){Fe(DSBDC)}, Na{Fe(DSBDC)}·2.5H₂O.

H ₄ DSBDC		(DMA){Fe(DSBDC)}		$Na{Fe(DSBDC)} \cdot 2.5H_2O$	
2540	ν_s SH				
1678*	v _{as} C=O	1544	ν_{as} COO-	1568	ν_{as} COO-
1473	ν_{s} CC, ν_{s} CO	1468	ν_{s} CC, ν_{s} CO	1453	v _s CC
1407	ν_{s} CC, ν_{s} CO	1433	ν_{s} CC, ν_{s} CO	1444	v _s CC
1348	ν_{s} CC, ν_{s} CO	1342	$\nu_s \text{COO}^-$	1350	$\nu_s \text{COO}^-$
	ν_s CC, ν_s CO-H, ν_s		ν_s CC, ν_s CO-H, ν_s		
1295	СО	1299	СО	1299	v_s CC, v_s CO
1250	ν_{s} CO, ν_{s} CC	1248	$\nu_s CC$	1250	v _s CC

*most intense peaks are highlighted bold.

7. Thermogravimetric analyses (TGA)

Figure S12. TG-DSC curves of (DMA){Fe(DSBDC)} measured under air at 5°C min⁻¹.

Figure S13. TG-DSC curves of Na{Fe(DSBDC)}·2.5H₂O measured under air at 5°C min⁻¹.

Figure S14. TG-DSC curves of K{Fe(DSBDC)} \cdot nH₂O measured under air at 5°C min⁻¹.

8. Stability tests in DMF, ethanol, and water

The stability of the three solids in DMF, ethanol, and water was evaluated by suspending samples in these solvents and examining signs of degradation at the end of the period by powder X-ray diffraction, infrared spectroscopy and visual inspection of the supernatant. For the tests, 10 mg of solid was suspended in 10 ml of solvent in nearly full closed glass vials. The suspensions were stirred for 1 h, and then left at rest for a determined amount of time. At the end of the period, the compounds were separated from their solvents by centrifugation and washed with ethanol. The isolated samples were characterized by PXRD and IR spectroscopy.

Figure S15. PXRD patterns (a) and FTIR spectra (b) after stability tests for (DMA){Fe(DSBDC)}.

Figure S16. PXRD patterns (a) and FTIR spectra (b) after stability tests for $Na{Fe(DSBDC)}\cdot 2.5H_2O$.

Figure S17. PXRD patterns (a) and FTIR spectra (b) after stability tests for $K{Fe(DSBDC)} \cdot nH_2O$.

9. UV-vis absorption spectroscopy

Figure S18. Solid-state UV-visible reflectance spectra of (DMA){Fe(DSBDC)}, Na{Fe(DSBDC)}·2.5H₂O and K{Fe(DSBDC)}·nH₂O.

Figure S19. Illustration of the colour change occurring upon reaction between H₄DSBDC and Fe(III). Left: initial solution of reactants (in DMF): middle: solution after immediate mixing; right: powder recovered after heating (here Na{Fe(DSBDC)} \cdot 2.5H₂O.

10. Magnetic susceptibility and Mössbauer spectroscopy

Figure S20. $\chi(T)$. *T* product for a Na{Fe(DSBDC)}·2.5H₂O sample as a function of temperature *T* (open circles; left scale). The derivative $d(\chi(T).T)/dT$ (plus signs; right scale) is also plotted to highlight the magnetic transition at $T_N \approx 72$ K.

Figure S21. Mössbauer spectra of Na $\{Fe(DSBDC)\}$ ·2.5H₂O recorded at 7K.

Table S6. Refined values of hyperfine parameters of Na{Fe(DSBDC)} $\cdot 2.5H_2O$ at 7K. At low temperature, magnetic ordering runs along the edge-sharing {FeS₄O₂}_n chains and FeS₄O₂ sites are split into two inequivalent positions. On the other hand, FeO₆ sites are not affected by this magnetic ordering as they are not in direct contact with {FeS₄O₂}_n chains.

	Hyperfine field B _{hf} (T)	Δ (mm·s ⁻¹)	δ (mm·s ⁻¹)	Area (%)	Assignment
Sextet # 1 (Blue)	48.76	-0.70	0.61	43	HS-Fe ⁺³ S ₄ O ₂
Sextet #2 (Green)	45.96	-0.21	0.65	51	HS-Fe ⁺³ S ₄ O ₂
Doublet		1.27	0.44	6	HS-Fe ⁺³ O ₆

11. Electrochemical evaluation

Figure S22. Electrochemical behavior of Na{Fe(DSBDC)} in a half-cell vs. Na cycled in a voltage range of 1.5–4.0 V vs. Na⁺/Na. a) Potential vs. number of inserted/extracted Na⁺ in the first cycle at C/20 current rate. b) Charge/discharge capacity at different current rates.

Figure S23. Comparison of the potential vs. number of inserted/extracted alkali cations during the first electrochemical cycle for the three alkali. The voltage axis refers to standard hydrogen electrode (SHE).

References

- Vial, L.; Ludlow, R. F.; Leclaire, J.; Pérez-Fernandez, R.; Otto, S. Controlling the Biological Effects of Spermine Using a Synthetic Receptor. J. Am. Chem. Soc. 2006, 128 (31), 10253– 10257. https://doi.org/10.1021/ja062536b.
- (2) Du, S.; Cui, M.; He, Z. Approach toward Iron(II) Coordination Polymers Based on Chain Motifs with Thiolate or Mixed Thiolate/Carboxylate Bridges: Structures and Magnetic Properties. *Inorg. Chem.* 2021, 60 (24), 19053–19061. https://doi.org/10.1021/acs.inorgchem.1c02905.
- (3) Sun, L.; Hendon, C. H.; Minier, M. A.; Walsh, A.; Dincă, M. Million-Fold Electrical Conductivity Enhancement in Fe 2 (DEBDC) versus Mn 2 (DEBDC) (E = S, O). J. Am. Chem. Soc. 2015, 137 (19), 6164–6167. https://doi.org/10.1021/jacs.5b02897.
- (4) Férey, G.; Millange, F.; Morcrette, M.; Serre, C.; Doublet, M.-L.; Grenèche, J.-M.; Tarascon, J.-M. Mixed-Valence Li/Fe-Based Metal–Organic Frameworks with Both Reversible Redox and Sorption Properties. *Angew. Chemie Int. Ed.* 2007, *46* (18), 3259–3263. https://doi.org/10.1002/anie.200605163.
- (5) Fateeva, A.; Horcajada, P.; Devic, T.; Serre, C.; Marrot, J.; Grenèche, J. M.; Morcrette, M.; Tarascon, J. M.; Maurin, G.; Férey, G. Synthesis, Structure, Characterization, and Redox Properties of the Porous MIL-68(Fe) Solid. *Eur. J. Inorg. Chem.* 2010, 68 (24), 3789–3794. https://doi.org/10.1002/ejic.201000486.
- (6) Yamada, T.; Shiraishi, K.; Kitagawa, H.; Kimizuka, N. Applicability of MIL-101(Fe) as a

Cathode of Lithium Ion Batteries. *Chem. Commun.* **2017**, *53* (58), 8215–8218. https://doi.org/10.1039/C7CC01712J.

(7) Sava Gallis, D. F.; Pratt III, H. D.; Anderson, T. M.; Chapman, K. W. Electrochemical Activity of Fe-MIL-100 as a Positive Electrode for Na-Ion Batteries. J. Mater. Chem. A 2016, 4 (36), 13764–13770. https://doi.org/10.1039/C6TA03943J.