Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Rapid synthesis of active Pt single atoms and Ru clusters on carbon

black via high-efficiency microwave strategy for hydrogen evolution

reaction in acidic and alkaline media

Xinyu Zhu^a, Minghao Fang^{a, *}, Bozhi Yang^a, Meiling Zhan^a, Shaorou Ke^a, Fan Yang^a, Xiaowen Wu^a, Yangai Liu^a, Zhaohui Huang^a, Xin Min^{a, *}

^a Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon

Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid

Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China

Fig. S1. TEM images at a range of magnifications of (a) $Pt_1@C$ and (c) $Ru_x@C$, respectively. EDS selected area and corresponding mappings of (c) $Pt_1@C$ (d) and $Ru_x@C$, respectively.

Fig. S2. TEM images at a range of magnifications of $Ru_x@C$.

Fig. S3. HAADF-STEM image of Pt₁@C.

Fig. S4. TEM images of samples under different microwave durations.

Fig. S5. N₂ adsorption-desorption isotherm curves of samples.

Fig. S6. XRD spectra of $Pt_1Ru_x@C$, $Pt_1@C$, $Ru_x@C$ and C.

Fig. S7. XRD spectra of Pt₁Ru_x@C at different microwave time.

Fig. S8. Raman spectra of Pt₁Ru_x@C, Pt₁@C, Ru_x@C and C.

Fig. S9. XPS survey spectra of samples of $Pt_1Ru_x@C$, $Pt_1@C$, $Ru_x@C$ and C.

Fig. S10. XPS O 1s spectra of samples.

Fig. S11. Fitted spectra of Pt sites in (a) Pt foil and (b) PtO₂.

Fig. S12. The k³-weighted EXAFS in Pt K-space for Pt foil, PtO_2 , and $Pt_1Ru_x@C$.

Fig. S13. CV curves at different scan rates from 20 to 100 mV s⁻¹ in 0.5 \mbox{M} H₂SO₄ and capacitive current at 0.167 V as function of scan rates for (a, d) Pt₁Ru_x@C, (b, e) Pt₁@C, and (c, f) Ru_x@C.

Fig. S14. Linear sweep voltammetry curves of 20wt% Pt/C before and after 1,000 CV cycles in

0.5 м H₂SO₄.

Fig. S15. CV curves at different scan rates from 20 to 100 mV s⁻¹ in 1.0 M KOH and capacitive current at 0.167 V as function of scan rates for (a, d) $Pt_1Ru_x@C$, (b, e) $Pt_1@C$, (c, f) and $Ru_x@C$.

Fig. S16. Linear sweep voltammetry curves of 20wt% Pt/C before and after 1,000 CV cycles in

1.0 м КОН.

Fig. S17. HER performance in 0.5 м H₂SO₄/1.0 м KOH solution under different microwave time (a-b) Linear sweep voltammetry curves, (c) overpotentials.

Fig. S18. (a-b) Chemisorption atomic models with of H on the surfaces of Ru_x@C at different sites; (c) Optimization process of Ru_x@C with O at site.

Fig. S19. Chemisorption atomic models with of H on the surfaces of $Pt_1@C$ at site3.

Fig. S20. Chemisorption atomic models with of H and OH intermediates on the surfaces of

Pt(111).

	Elements		
Sample	Pt	Ru	
	[wt%]	[wt%]	
Pt ₁ @C	5.45	/	
Ru _x @C	/	1.49	
Pt ₁ Ru _x @C	4.78	1.32	

Tab. S1. The content of different kind of Pt and Ru in the catalysts.

Tab. S2. The content of different kind of Pt and Ru of $Pt_1Ru_x@C$ at different microwave time.

	E	lements	
Sample	Pt	Ru	
	[wt%]	[wt%]	
Pt ₁ Ru _x @C-10	2.15	0.72	
$Pt_1Ru_x@C-30$	4.22	1.03	
Pt ₁ Ru _x @C-70	4.80	1.26	

		Ra	man shift		
Peak	[cm ⁻¹]				
	С	Ru _x @C	Pt ₁ @C	Pt ₁ Ru _x @C	
G	1219.8	1224.1	1236.3	1225.8	
D2	1336.9	1337.6	1343.8	1340.8	
D1	1504.3	1506.9	1509.4	1509.3	
D3	1586.9	1589.1	1594.1	1592.9	

Tab. S3. Information on the bands that make up the first-order Raman spectrum of samples.

Tab. S4. The binding energy of Pt 4f, Ru $3p_{3/2}$ and O 1s from XPS.

Binding		energy		Binding energy		Binding energy	gy	
Catalysts –	[eV]		Commonant	[eV]	Component	[eV]	Commonant	
	Pt	Pt	- Component	Ru 3p _{3/2}	Component	O 1s	Component	
	$4f_{7/2}$	4f _{5/2}						
Pt ₁ Ru _x @C	72.62	76.00	Pt^{2+}	463.59	Ru ⁰	530.60	Pt/Ru-O	
	74.51	78.01	Pt ⁴⁺	/	/	/	/	
Pt ₁ @C	72.13	75.46	Pt^{2+}	/	/	530.17	Pt-O	
	74.16	77.63	Pt ⁴⁺	/	/	/	/	
Ru _x @C	/	/	/	463.79	Ru ⁰	530.22	Ru-O	

Tab. S5. XAFS parameters of $Pt_1Ru_x@C$, Pt foil and PtO_2 .

Sample	Shall	N ^{a)}	R	σ^2	R-factor ^{d)}
	Snen		[Å] ^{b)}	[10 ⁻³ Å ²] ^{c)}	
Pt ₁ Ru _x @C	Pt-C/O	1.5	2.51	8.42	0.02
Pt foil	Pt-Pt	12	2.76	1.90	0.02
PtO ₂	Pt-O	6	1.99	2.35	0.02

^{a)}N, coordination number; ^{b)}R, distance between absorber and backscattered atoms; ^{c)} σ^2 , Debye-Waller factor; ^{d)}R-factor, closeness of the fit, if < 0.05, consistent with broadly correct models. Estimated error: N: ±20%, R: ±0.03.

		η@10 mA cm ⁻²	Tafel slope		
Catalyst	Electrolyte	[mV]	[mV dec ⁻¹]	Ref.	
Pt ₁ Ru _x @C	0.5 M H ₂ SO ₄	13.15	20.7	This work	
Pt ₁ Ru _x @C	1.0 M KOH	48.7	55.6	This work	
Fe/GD	0.5 M H ₂ SO ₄	66	37.8	1	
Co ₁ /PCN	0.5 M H ₂ SO ₄	151	52	2	
NiO/Ni@NCNTs	0.5 M H ₂ SO ₄	87.5	80	3	
Mo@NMCNFs	$0.5 \text{ M H}_2 \text{SO}_4$	66	84.9	4	
PtW ₆ /C	0.5 M H ₂ SO ₄	22	/	5	
Pt-Ru dimer	0.5 M H ₂ SO ₄	50	28.9	6	
Pt ₁ @Fe-C	$0.5 \text{ M H}_2\text{SO}_4$	60	42	7	
$Pt_1/Ti_{1-x}O_2$	0.5 M H ₂ SO ₄	22.2	31	8	
PtNi-NC	0.5 M H ₂ SO ₄	30	27	9	
NeC@CoP/Ni ₂ P	0.5 M H ₂ SO ₄	153	53.01	10	
Cu/Ru@G _N	0.5 M H ₂ SO ₄	10	25	11	
W ₁ Mo ₁ -NG	1.0 M KOH	67	45	12	
Ir ₁ @Co/NC	1.0 M KOH	55	119	13	
Ru - $SA/Ti_3C_2T_x$	1.0 M KOH	70	27.7	14	
Ru/Ni-MoS ₂	1.0 M KOH	32	41	15	
Ru/Co-CAT/CC	1.0 M KOH	38	/	16	
Ru-MoS ₂ /CC	1.0 M KOH	41	114	17	
Ru-W/WO ₂ -800	1.0 M KOH	11	31.3	18	
12%Rh-Co ₂ Fe-P	1.0 M KOH	48	53	19	
Fe-N ₄ SAs/NPC	1.0 M KOH	202	123	20	
Co ₁ /PCN	1.0 M KOH	89	/	2	

 Tab. S6. Summarized acidic/alkaline HER performance of some reported atomic level catalysis

 with present work.

References

1. Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu and Y. Li, Nat. Commun., 2018,

9, 1460.

- L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu, Y. Cao, W. Zhang, Y. Wu, J. Yang and T. Yao, *Nat. Catal.*, 2019, 2, 134-141.
- J. Wang, X. Ge, L. Shao, J. Zhang, D. Peng, G. Zou, H. Hou, W. Deng, S. Xu, X. Ji and W. Zhang, *Mater. Today Energy*, 2020, 17.
- T. F. Li, T. Y. Lu, X. Li, L. Xu, Y. W. Zhang, Z. Q. Tian, J. Yang, H. Pang, Y. W. Tang and J. M. Xue, *ACS Nano*, 2021, 15, 20032-20041.
- F.-Y. Yu, Z.-L. Lang, Y.-J. Zhou, K. Feng, H.-Q. Tan, J. Zhong, S.-T. Lee, Z.-H. Kang and Y.-G. Li, ACS Energy Lett., 2021, 6, 4055-4062.
- L. Zhang, R. T. Si, H. S. Liu, N. Chen, Q. Wang, K. Adair, Z. Q. Wang, J. T. Chen, Z. X. Song,
 J. J. Li, M. N. Banis, R. Y. Li, T. K. Sham, M. Gu, L. M. Liu, G. A. Botton and X. L. Sun, *Nat. Commun.*, 2019, 10.
- X. Zeng, J. Shui, X. Liu, Q. Liu, Y. Li, J. Shang, L. Zheng and R. Yu, *Adv. Energy Mater.*, 2018, 8, 1701345.
- F. Lu, D. Yi, S. J. Liu, F. Zhan, B. Zhou, L. Gu, D. Golberg, X. Wang and J. N. Yao, *Angew. Chem.*, *Int. Ed.*, 2020, 59, 17712-17718.
- Y. M. Da, Z. L. Tian, R. Jiang, Y. Liu, X. Lian, S. B. Xi, Y. Shi, Y. P. Wang, H. T. Lu, B. H. Cui, J. F. Zhang, X. P. Han, W. Chen and W. B. Hu, *Sci. China Mater.*, 2023, 66, 1389-1397.
- T. Feng, F. Wang, Y. Xu, M. Chang, X. Jin, z. Yulin, J. Piao and J. Lei, *Int. J. Hydrogen Energy*, 2021, 46, 8431-8443.
- A. M. Harzandi, S. Shadman, M. Ha, C. W. Myung, D. Y. Kim, H. J. Park, S. Sultan, W.-S. Noh, W. Lee, P. Thangavel, W. J. Byun, S.-h. Lee, J. N. Tiwari, T. J. Shin, J.-H. Park, Z. Lee, J. S. Lee and K. S. Kim, *Appl. Catal.*, *B*, 2020, **270**, 118896.
- Y. Yang, Y. Qian, H. Li, Z. Zhang, Y. Mu, D. Do, B. Zhou, J. Dong, W. Yan, Y. Qin, L. Fang, R. Feng, J. Zhou, P. Zhang, J. Dong, G. Yu, Y. Liu, X. Zhang and X. Fan, *Sci. Adv.*, 2020, 6, eaba6586.
- W.-H. Lai, L.-F. Zhang, W.-B. Hua, S. Indris, Z.-C. Yan, Z. Hu, B. Zhang, Y. Liu, L. Wang, M. Liu, R. Liu, Y.-X. Wang, J.-Z. Wang, Z. Hu, H.-K. Liu, S.-L. Chou and S.-X. Dou, *Angew. Chem., Int. Ed.*, 2019, **58**, 11868-11873.
- 14. X. Peng, S. Zhao, Y. Mi, L. Han, X. Liu, D. Qi, J. Sun, Y. Liu, H. Bao, L. Zhuo, H. L. Xin, J.

Luo and X. Sun, Small, 2020, 16, 2002888.

- 15. B. Guo, R. Ma, Z. Li, J. Luo, M. Yang and J. Wang, Mater. Chem. Front., 2020, 4, 1390-1396.
- Y. He, F. Yan, X. Zhang, C. Zhu, Y. Zhao, B. Geng, S. Chou, Y. Xie and Y. Chen, *Adv. Energy Mater.*, 2023, 13, 2204177.
- 17. D. W. Wang, Q. Li, C. Han, Z. C. Xing and X. R. Yang, Appl. Catal., B, 2019, 249, 91-97.
- W. L. Ma, X. Y. Yang, D. D. Li, R. X. Xu, L. P. Nie, B. P. Zhang, Y. Wang, S. Wang, G. Wang, J. X. Diao, L. R. Zheng, J. B. Bai, K. Y. Leng, X. L. Li and Y. T. Qu, *Adv. Sci.*, 2023.
- 19. L. Li, Y. Lu, X. Liu, X. Wang and S. Zhou, J. Alloys Compd., 2022, 895, 162549.
- Y. Pan, S. Liu, K. Sun, X. Chen, B. Wang, K. Wu, X. Cao, W. C. Cheong, R. Shen and A. Han, *Angew. Chem.*, *Int. Ed.*, 2018, 57, 8614-8618.