Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information for:

Thiol-yne click chemistry on carbon nanotubes for mediated bioelectrocatalytic glucose oxidation

Monica Brachi, ^a Fabien Giroud, ^a Serge Cosnier^{a,b} and Alan Le Goff*^a

^aUniv. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France

^bCentre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.

1. Materials and Methods

Chemicals and general procedures.

Multiwalled carbon nanotubes (MWCNT, 10 nm diameter, purity > 99%) were obtained from Sigma-Aldrich and were used as received without any purification. All the reagents were purchased from Sigma–Aldrich and were used without further purification. All solvents were of analytical grade. Ferrocenemethanethiol, 4-ethynylbenzenediazonium tetrafluoroborate¹ and 8-mercapto-N-(1,10-phenanthrolin-5-yl) octanamide² were prepared as previously described. Distilled water was passed through a Milli-Q water purification system. The electrochemical experiments were carried out in a three-electrode electrochemical cell using a Autolab PGSTAT100 Potentiostat. The MWCNT electrodes were used as working electrodes. Pt wire was used as counter electrode and the reference electrode was based on the Ag/AgNO₃ 10^{-2} M reference electrode in MeCN and Saturated Calomel Electrode (SCE) in water. All potentials are given versus Fc/Fc⁺ in MeCN and the SCE in water. All current densities are normalized towards the geometrical surface area of the MWCNT/glassy carbon electrode (0.28 cm²). Experiments were repeated on at least three electrodes. XPS analysis was performed using a Thermoelectron ESCALAB 250 device (ICGM, France). The X-ray excitation was provided by a monochromatic Al-K α (h ν =1486.6 eV) source. The analyzed area was ~0.15 mm². The background signal was removed using the Shirley³ method. The surface atomic concentrations were determined from photoelectron peak areas using the atomic sensitivity factors reported by Scofield⁴. Binding energies (BE) of all core levels were referred to the C=C of C1s carbon at 284.4 eV. Raman spectroscopy was performed on a Witec Alpha 300R (laser He-Ne 633 nm, x50 lens magnification). For measurement purpose, diazonium functionalization of MWCNTs was performed *in situ* using a previously-described chemical diazotisation procedure.^{5,6}

Caution: Perchlorate salts present a potential explosion risk; use with caution!

Preparation of MWCNT electrode modified with 4-ethynylbenzenediazonium tetrafluoroborate and FAD-GDH

MWCNT films were prepared by drop coating 20 μ L of a 5 mg mL⁻¹ dispersion of MWCNTs in 1-Methyl-2-pyrrolidinone (NMP) onto the glassy carbon (GC) electrode surface. The deposit was then allowed to dry under vacuum.

Electrografting of 4-ethynylbenzenediazonium tetrafluoroborate on the surface of the MWCNT electrodes was performed by cyclic voltammetry in MeCN with 0.1 M tetrabutylammonium perchlorate (TBAP) as the supporting electrolyte.

For the bioelectrodes preparation, the modified MWCNT GC electrodes were incubated in 20 μ L of FAD-GDH solution (5 mg mL⁻¹, >900 U mg⁻¹ in 0.1 M phosphate buffer pH 7) for 6 h at 4°C.

Figure S1. CVs of the pristine MWCNT electrodes functionalized by soaking the electrodes in ferrocenylmethanethiol and 6-ferrocenyl(hexanethiol) (MeCN/0.1 M TBAP, 10 mV s⁻¹).

Figure S2. Experimental and fitted curves for the functionalization of alkyne-modified MWCNT electrodes against UV irradiation exposure time.

Figure S3. XPS spectra of the alkyne-modified MWCNT electrodes functionalized with ferrocenemethanethiol in the (a) presence and (b) absence of UV irradiation.

Figure S4. Representative Raman spectrum for (a) pristine MWCNTs, (b) MWCNTs modified by *in situ* 4-ethynylbenzenediazonium functionalization and (c) MWCNTs modified with 1-ethynylpyrene

Figure S5. CVs of alkyne-modified MWCNT electrodes functionalized with phenanthrolinequinone by thiol-yne chemistry at different pH (2, 4, 7, 10, 12) (0.1 M phosphate buffer, 10 mV s⁻¹).

References

(1) Evrard, D.; Lambert, F.; Policar, C.; Balland, V.; Limoges, B. Electrochemical Functionalization of Carbon Surfaces by Aromatic Azide or Alkyne Molecules: A Versatile

Platform for Click Chemistry. *Chem. Eur. J.* **2008**, *14* (30), 9286–9291. https://doi.org/10.1002/chem.200801168.

- (2) Elmes, R. B. P.; Orange, K. N.; Cloonan, S. M.; Williams, D. C.; Gunnlaugsson, T. Luminescent Ruthenium(II) Polypyridyl Functionalized Gold Nanoparticles; Their DNA Binding Abilities and Application As Cellular Imaging Agents. J. Am. Chem. Soc. 2011, 133 (40), 15862–15865. https://doi.org/10.1021/ja2061159.
- (3) Shirley, D. A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. *Phys. Rev. B* **1972**, *5* (12), 4709–4714. https://doi.org/10.1103/PhysRevB.5.4709.
- (4) Scofield, J. H. Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 eV. *Journal of Electron Spectroscopy and Related Phenomena* **1976**, *8* (2), 129–137. https://doi.org/10.1016/0368-2048(76)80015-1.
- (5) Bahr, J. L.; Tour, J. M. Highly Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds. *Chem. Mater.* **2001**, 3823–3824.
- (6) Lalaoui, N.; Holzinger, M.; Le Goff, A.; Cosnier, S. Diazonium Functionalisation of Carbon Nanotubes for Specific Orientation of Multicopper Oxidases: Controlling Electron Entry Points and Oxygen Diffusion to the Enzyme. *Chem. Eur. J.* 2016, 22 (30), 10494– 10500. https://doi.org/10.1002/chem.201601377.