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Fig. S1. (a) When two-dimensional nanosheets are used as electrolyte fillers, lithium
ions need to be transported bypassing the nanosheets. (b) When porous nanosheets are
used as electrolyte fillers, lithium ions can be transported through the porous and in as
straight a line as possible, so the hierarchical porous FCN significantly shorten the

transport distance of lithium ions.
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Fig. S2. Schematic synthesis process of FCN nanosheets.
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Fig. S3. SEM image of bulk g-C;Nj,.
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Fig. S4. XRD patterns of bulk g-C;N4 and FCN nanosheets.



’5 F1s
5 FCN
> i
g N 1s
o
= O 1s C1s

800 600 400 200 O

Binding energy (eV)

Fig. S5. XPS survey spectra of bulk g-C3N,4 and FCN nanosheets.
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Fig. S6. (a) Photos of light-yellow solution containing FCN, LiTFSI and PEO after



resting for 7 days, as well as (b), (¢) FCN reinforced composite polymer membrane.

Table S1. Characteristic parameters for PEO/LiTFSI and 0.1FCN-PEO/LiTFSI

electrolytes, including melting enthalpy change (AH, J g1, relative PEO content (X,

%), and crystallinity (XC, %). Xe is calculated from the equation

Xe= (AH / (X X AH )) X 100, where AH (213.7 J g'1) is the melting enthalpy change

of completely crystallized PEO.

Abbreviation of Relative PEO

AH (J o1 inses (Xc o
sample e content (X, %) Crystallinity (%<, %)
PEO/LiTFSI 47.31 71 31.2
0.1FCN-PEO/LiTFSI 31.59 66 22.4

Fig. S7. Cross-sectional SEM images of PEO/LiTFSI electrolyte with (a) 0 wt.%, (b) 3

Wt.%, () 5 Wt.%, (d) 10 wt.%, (¢) 15 wt.% and (f) 20 wt.% FCN.
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Fig. S8. EDS mappings of (a) 0.IFCN-PEO/LiTFSI and (b) 0.2FCN-PEO/LiTFSI for

the elements of C, N and S.
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Fig. S9. Arrhenius plots for FCN-PEO/LiTFSI electrolytes with different amounts of

FCN.
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Fig. S10. FTIR spectra of PEO/LiTFSI and 0.1FCN-PEO/LiTFSI. The amplified

spectra in the wavenumber ranges of 1000-1800 cm™! and 550-1000 cm! are shown as

insets on the right.
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Fig. S11. Chronoamperometry curve of Li|[PEO/LiTFSI||Li symmetric cell at a voltage
bias of 10 mV for a duration time of 6000 s, inset: AC impedance spectra of

Li|[PEO/LiTFSIJ|Li cell before and after polarization at 60 °C.
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Fig. S12. Ex situ XPS measurements of lithium metal anode surface after cycling for

both the PEO/LiTFSI and 0.1FCN-PEO/LiTFSI systems, with the signals of (a) F 1s

and (b) S 2p.
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Fig. S13. Charge/discharge curves of (a) Li||0.1IFCN-PEO/LiTFSI||[LFP and (b)

Li||PEO/LiTFSI||LFP cells at 1 C.
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Fig. S14. Rate performance of LFP cells at 60 °C.
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Fig. S15. Rate performance of Li||0.1FCN-PEO/LiTFSI||NCM523 cell.
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Fig. S16. Charge/discharge curves of (a) Li||0.1FCN-PEO/LiTFSI|[NCM523 and (b)

Li|[PEO/LiTFSI|[NCM523 cells at 1 C.

Table S2. The cycle performance of Li|[NCM523 cells assembled by PEO-based

electrolytes.
Temper Initial Reversible
Current Cycle Capacity
Electrolyte ature capacity capacity Ref.
density mber retention
(°0) (mAh g) (mAh g)
PEO/LiTFSI/Li
60 05C - 100 128 ~853 % [1]
DGO
T-PEO-PT 40 02C 110.9 75 - =~78.9 % [2]
EO-
60 02C - 125 ~100 ~61.0 % [3]
MA@LAGP
PEO/NS-CD 45 02C - 100 138.3 ~74.7 % [4]
PEO/LiClO4/BE 50 02C - 100 145.1 ~82.9 % [5]
LA-PEO-
30 02C - 110 87 =79.1 % [6]
PAM-3-1-1
0.1FCN-
60 1C 145.3 300 126.7 872 % This work
PEO/LiTFSI
0.1FCN-
60 2C 137 150 120.3 87.8 % This work

PEO/LiTFSI




Fig. S17. Li||0.1FCN-PEO/LiTFSI|[NCM523 pouch cells can (a) light up an LED while

remaining operational under (b) bending, (c¢) puncturing, and (d) cutting situations.
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