Support Information

Realizing low ion migration and highly sensitive X-ray detection by building g-C₃N₄ and CH₃NH₃PbI₃ bulk heterojunction pellets

Chengzhi Xue,^a Yingrui Xiao,^a Xing Liu,^a Ziwei Xu,^a Nan Li,^a Shubo Wang,^c Ningyi Yuan,^d Jianding Ding,^e Xu Guo,^{*a} Zhou Yang,^{*a} and Shengzhong (Frank) Liu,^{*ab}

- a. Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China. Email: szliu@dicp.ac.cn; zyang@snnu.edu.cn; guoxu@snnu.edu.cn
- b. Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- c. School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213032 China
- d. School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou, 213164 China
- e. Micro/Nano Science and Technology Center, Jiangsu University, Zhenjiang, 212013 China

Fig. S1. (a) g-C₃N₄, MAPbI₃ powders and XRD diffractogram patterns of 2D/3D wafers. (b) UV-Vis absorption spectra of MAPbI₃ and g-C₃N₄. Band gap energy calculation (Tauc plots) (c) MAPbI₃, and (d) g-C₃N₄.

Fig. S2. (a) Scanning electron microscopy (SEM) images of the MAPbI₃ powder. (b) Grain size statistic of MAPbI₃ powders.

Fig. S3. Microstructure of perovskite and g-C₃N₄ double-layer wafer. (a, b) The cross-sectional thickness of the double-layer wafer and position of morphological enlargement. (c, d) Microstructure of the bottom of the perovskite layer. (e, f) Microstructure of the middle of the perovskite layer (g, h) Microstructure of the top of the perovskite layer. (i, j) Microstructure between the perovskite layer and the g-C₃N₄ layer.

Fig. S4. Micro-regional elemental analysis of wafer cross-sections (a) Picture. Elemental distributions (b) I, and (c) Pb elements.

Fig. S5. The plane microstructure of the pellets. Scanning electron microscopy (SEM) images of the pristine 3D pellet (a, b), 1% 2D/3D pellet (c, d), 2% 2D/3D pellet (e, f), 4% 2D/3D pellet (g, h), and 8% 2D/3D pellet (i, j).

Fig. S6. Schematic diagram of wafer thickness.

Fig. S7. Resistivities of 3D, 2D and 2D/3D wafers.

Fig. S8. Current time profile on the wafers at the beginning of the phase. Applying a voltage of 10 V. (a) 3D. (b) 4% 2D/3D. The mixed region in the diagram refers to the coexistence of both ionic and electronic conductivity. The electron region is where electron conductivity is dominant.

Fig. S9. Photoconductivity of 3D and 2D/3D wafers. Fitting lines for the $\mu\tau$ product were shown.

Fig. S10. The time-dependent PL mapping of (a) 3D wafer and (b) 4% 2D/3D wafer under 40 V bias and excitation of 405 nm laser.

Fig. S11. Summary of response currents under different bias voltages and X-ray dose rates. (a) 3D, (b) 1% 2D/3D, (c) 2% 2D/3D, (d) 4% 2D/3D, and (e) 8% 2D/3D wafers.

Fig. S12. 4% 2D/3D pellet response current and current drift at 60 V bias voltage.

Fig. S13. Current-time curves for different 2D/3D mixed wafers at 10V bias. (a) 1% GO/MAPbI₃. (b) 4% MoS₂/MAPbI₃. Resistivities of the 1% GO/MAPbI₃ wafer (c), and 4% MoS₂/MAPbI₃ wafer (d). The cross-sectional microstructure of the pellets. Scanning electron microscopy (SEM) images of the 1% GO/MAPbI₃ pellet (c), and 4% MoS₂/MAPbI₃ pellet (d).

Fig. S14. X-ray image of the key obtained with a bias voltage of 10 V. (a) Dose rate of 11.57 μ Gy_{air} s⁻¹. (b) Dose rate of 5.698 μ Gy_{air} s⁻¹.

Fig. S15. The current-time curve of the imaging process.

Materials	Applied electric field	Dark current drift	References
	(V cm ⁻¹)	(nA cm ⁻¹ s ⁻¹ V ⁻¹)	
3D MAPbI ₃ single crystal	100	1.4×10 ⁻⁴	1
3D MAPbBr ₃ single crystal	20	1.2×10 ⁻³	2
3D CsPbBr ₃ single crystal	2000	1.9×10 ⁻⁴	3
3D MAPbl ₃ crystal with DPSI	270	1.2×10 ⁻⁵	4
2D (PEA) ₂ MA ₃ Pb ₄ I ₁₃ -3D MAPbI ₃ double-layer film	333	1.88×10 ⁻²	5
3D MAPbl ₃ film with Pbl ₂ -DMSO powders	166.7	1.31×10 ⁻⁴	6
2D BA ₂ PbI ₄ -3D MAPbI ₃ bulk heterostructure pellet	125	4.84×10 ⁻⁵	7
BiOBr passivated 3D Cs ₂ AgBiBr ₆ film	5000	7.4×10 ⁻⁵	8
2D (F-PEA) ₂ Pbl ₄ single crystal	1333	4.9×10⁻ ⁸	9
2D (BDA)PbI₄ single crystal	4545	6.06×10 ⁻⁹	10
4% 2D g-C ₃ N₄-3D MAPbl ₃ bulk heterostructure pellet	126.6	4.02×10 ⁻⁴	This work
8% 2D g-C ₃ N ₄ -3D MAPbl ₃ bulk heterostructure pellet	126.6	4.87×10 ⁻⁵	This work
3D MAPbl ₃ polycrystalline pellet	126.6	1.13×10 ⁻²	This work

Table S1. Summary of the dark current drift for reported perovskite-based X-ray or γ-raydetectors under different applied electric fields.

Materials	Applied electric	Sensitivity	Detection	References
	field	$(\mu C G y_{air}^{-1} cm^{-2})$	limit	
	(V cm ⁻¹)		(nGy _{air} s ⁻¹)	
3D MAPbl ₃ wafer	2000	2.5×10 ³	N/A	11
3D MAPbl₃ film	2400	1.1×10 ⁴	N/A	12
3D MAPbl₃ single crystal	1000	7.1×10 ⁵	1.5	13
3D MAPbl ₃ crystal with DPSI	417	2.9×10 ⁶	5.7	4
3D MAPbl ₃ microcrystalline	1700	9.3×10 ³	N/A	14
2D (PEA) ₂ MA ₃ Pb ₄ I ₁₃ -3D	333	1.9×10 ⁴	480	5
MAPbI₃ double-layer film				
3D MAPbl ₃ film with Pbl ₂ -	500	1.6×10 ⁴	410	6
DMSO powders				
2D BA ₂ PbI ₄ -3D MAPbI ₃ bulk	125	2.0×10 ³	111.76	7
heterostructure pellet				
4% 2D g-C ₃ N ₄ -3D MAPbI ₃ bulk	759.4	1.8×10 ⁵	27	This work
heterostructure pellet				

Table S2. Summary of the sensitivity and LoD for reported perovskite-based X-ray detectorsunder different applied electric fields.

References

- 1. S. Yakunin, D. N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh, O. Nazarenko, D. Kreil, T. Nauser and M. V. Kovalenko, *Nat. Photonics*, 2016, **10**, 585-589.
- 2. W. Wei, Y. Zhang, Q. Xu, H. T. Wei, Y. J. Fang, Q. Wang, Y. H. Deng, T. Li, A. Gruverman, L. Cao and J. S. Huang, *Nat. Photonics*, 2017, **11**, 315.
- Y. H. He, L. Matei, H. J. Jung, K. M. McCall, M. Chen, C. C. Stoumpos, Z. F. Liu, J. A. Peters, D. Y. Chung, B. W. Wessels, M. R. Wasielewski, V. P. Dravid, A. Burger and M. G. Kanatzidis, *Nat. Commun.*, 2018, 9, 1609.
- Y. Liu, X. P. Zheng, Y. J. Fang, Y. Zhou, Z. Y. Ni, X. Xiao, S. S. Chen and J. S. Huang, *Nat. Commun.*, 2021, 12, 1686.
- 5. X. Xu, W. Qian, J. Wang, J. Yang, J. Chen, S. Xiao, Y. Ge and S. Yang, Adv. Sci., 2021, 8, 2102730.
- W. J. Liu, T. Y. Shi, J. T. Zhu, Z. Y. Zhang, D. Li, X. C. He, X. S. Fan, L. Q. Meng, J. H. Wang, R. He, Y. S. Ge, Y. L. Liu, P. K. Chu and X. F. Yu, *Adv. Sci.*, 2023, **10**, 2204512.
- 7. Y. Xiao, C. Xue, X. Wang, Y. Liu, Z. Yang and S. Liu, ACS Appl. Mater. Interfaces, 2022, 14, 54867-54875.
- 8. B. Yang, W. C. Pan, H. D. Wu, G. D. Niu, J. H. Yuan, K. H. Xue, L. X. Yin, X. Y. Du, X. S. Miao, X. Q. Yang, Q. G. Xie and J. Tang, *Nat. Commun.*, 2019, **10**, 1989.
- 9. H. Y. Li, J. M. Song, W. T. Pan, D. R. Xu, W. A. Zhu, H. T. Wei and B. Yang, Adv. Mater., 2020, 32, 2003790.
- 10. Y. Shen, Y. Liu, H. Ye, Y. Zheng, Q. Wei, Y. Xia, Y. Chen, K. Zhao, W. Huang and S. Liu, *Angew. Chem. Int. Ed.*, 2020, **59**, 14896-14902.
- 11. S. Shrestha, R. Fischer, G. J. Matt, P. Feldner, T. Michel, A. Osvet, I. Levchuk, B. Merle, S. Golkar, H. W. Chen, S. F. Tedde, O. Schmidt, R. Hock, M. Ruhrig, M. Goken, W. Heiss, G. Anton and C. J. Brabec, *Nat. Photonics*, 2017, **11**, 436.
- 12. Y. C. Kim, K. H. Kim, D. Y. Son, D. N. Jeong, J. Y. Seo, Y. S. Choi, I. T. Han, S. Y. Lee and N. G. Park, *Nature*, 2017, **550**, 87.
- 13. Y. L. Song, L. Q. Li, W. H. Bi, M. W. Hao, Y. F. Kang, A. R. Wang, Z. S. Wang, H. M. Li, X. H. Li, Y. J. Fang, D. R. Yang and Q. F. Dong, *Research*, 2020, **2020**, 5958243.
- S. Deumel, A. van Breemen, G. Gelinck, B. Peeters, J. Maas, R. Verbeek, S. Shanmugam, H. Akkerman, E. Meulenkamp, J. E. Huerdler, M. Acharya, M. Garcia-Batlle, O. Almora, A. Guerrero, G. Garcia-Belmonte, W. Heiss, O. Schmidt and S. F. Tedde, *Nat. Electron.*, 2021, 4, 681-688.