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Figure S1. XRD patterns for NiFe-mono and NiFe-400 after redispersion in an aqueous 

Na2CO3 solution.

After re-dispersion in a Na2CO3 aqueous solution, both NiFe-mono and NiFe-400 existed 

in the form of stacks, evidenced by the characteristic (00l) diffraction peaks of multilayer 

NiFe-LDH. Results confirmed that both NiFe-mono and NiFe-400 were LDH materials.
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Figure S2. HRTEM images of (A) NiFe-mono; (B) NiFe-300; (C) and (D) NiFe-500.
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Figure S3. (A) Ni 2p and (B) Fe 2p XPS spectra of NiFe-mono, NiFe-300, and NiFe-400, 

respectively.

The Ni 2p spectra only showed two peaks with binding energies at 855.8 and 873.4 eV 

correspond to the Ni2+ 2p3/2 and Ni2+ 2p1/2, respectively1, 2. For Fe 2p spectra, the simultaneous 

existence of Fe2+ (710.4 and 722.8eV) and Fe3+ (712.5 and 725.0 eV) can be detected3, 4, and 

the concentration ratio of the two metal ions gradually increases (NiFe-LDH, Fe2+/ Fe3+ = 0.19; 

NiFe-300, Fe2+/ Fe3+ = 0.46; NiFe-400, Fe2+/ Fe3+ = 0.74), indicating that Fe is gradually 

reduced with the increase of reduction temperature. 
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Figure S4. Fe K-edge R-space plots with corresponding fitting results for (A) NiFe-mono; (B) 

NiFe-300; (C) NiFe-400 and (D) NiFe-500.
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Table S1. Local structure parameters around Fe for NiFe-mono and NiFe-x estimated by 

EXAFS analysis. 

sample shell N R(Å) σ2(10-3 Å2) R-factor(10-3)

NiFe-mono Fe-O 5.43 2.00 4.42 4.39

NiFe-300 Fe-O 4.95 1.96 7.50 5.04

NiFe-400 Fe-O 3.96 1.97 9.00 12.3

NiFe-500 Fe-M 7.94 2.49 7.75 12.4

N = coordination number; R = average distance between absorber and backscatter atoms; σ2 = 

Debye-Waller factor. 
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Figure S5. Ni K-edge R-space plots with corresponding fitting results for (A) NiFe-mono; (B) 

NiFe-300; (C) NiFe-400 and (D) NiFe-500.
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Table S2. Local structure parameters around Ni for NiFe-mono and NiFe-x estimated by 

EXAFS analysis.

Sample Shell N R(Å) σ2(10-3 Å2) R-factor(10-3)

NiFe-mono Ni-O 5.42 2.05 4.65 4.02

NiFe-300 Ni-O 5.21 2.03 5.50 17.0

NiFe-400 Ni-O 4.64 2.02 5.00 10.0

NiFe-500 Ni-M 8.24 2.50 7.55 8.52

N = coordination number; R = average distance between absorber and backscatter atoms; σ2 = 

Debye-Waller factor. 
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Figure S6. B K-edge XANES spectra for NiFe-mono, NiFe-300, NiFe-400 and NiFe-500. 

Data for the B2O3 is also provided as a reference.

B K-edge X-ray absorption near edge spectroscopy (XANES) was used to explore the 

chemical environment of B during the thermal reduction of NiFe-mono. As shown in Figure 

S5, the speciation of B in NiFe-mono, NiFe-300, NiFe-400 and NiFe-500 were very similar 

showing the presence of B3+ in B-O bonding environment. No evidence for B-Ni or B-Fe bonds 

were seen in the spectra, demonstrating that B-O bonds were very stable in the LDH-derived 

samples.
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Figure S7. (A) Plots of current density versus scan rate for NiFe-mono, NiFe-300, NiFe-400 

and NiFe-500 respecting ECSA, corresponding CV curves for (B) NiFe-mono, (C) NiFe-300, 

(D) NiFe-400 and (E) NiFe-500 in 1.0 M KOH electrolyte with 10 mM p-NP.

 Electrochemically active surface area (ECSA) measurements were used to estimate 

the intrinsic activities of NiFe-mono, NiFe-300, NiFe-400 and NiFe-500 for p-NP reduction. 

Cyclic voltammetry (CV) measurements at different scan rates (10, 20, 30, 40, 50 mV s-1) in a 

non-Faradaic region were used to calculate the electric double-layer capacitance value (Cdl) of 

the catalysts, with the Cdl values then used to obtain the ECSA values. The ECSA of the four 

catalysts followed the order NiFe-300 (47.04 mF cm-2) > NiFe-400 (46.02 mF cm-2) > NiFe-

mono (38.43 mF cm-2) > NiFe-500 (26.40 mF cm-2).
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Figure S8. Current density for p-NP electrocatalytic reduction by NiFe-400 at -1.0 V vs. 

Ag/AgCl. The p-NP solution was replenished periodically.
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Figure S9. HRTEM image of NiFe-400 after the electrocatalytic reduction of p-NP. 
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Figure S10. I-t curves for the continuous operation of the flow cell at (A) 10 mM p-NP for 

10 h and (B) 100 mM p-NP for 5 h at 2.0 V of full voltage using NiFe-400. FEs toward p-AP 

are also shown.
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Table S3. Comparison of electrocatalytic reduction reactivity of organic substrates with 

different catalyst.

Catalyst Type of electrocatalytic 
hydrogenation

Reduction
Agent

FE for 
product

(%)

Reactant 
concentratio

n (mM)
Reference

Co-F NW Quinolines to 1,2,3,4-
tetrahydroquinolines H2O - 10 Nat Commun 13, 5297 

(2022)5

MoNi4
Quinolines to 1,2,3,4-
tetrahydroquinolines H2O 80 10 Chin J Catal 42, 1983-

1991 (2021)6

1T-rich 
MoS2

furfural to furfuryl 
alcohol H2O - 20 Green Chem 24, 7974-

7987 (2022)7

Ag/C

5-
hydroxymethylfurfural 

to 2,5-
bis(hydroxymethyl)fura

n

H2O 96.2 20 Green Chem 21, 6210-
6219 (2019)8

Ru1Cu 
(SAA)

5-
hydroxymethylfurfural 

to 2,5-
dihydroxymethylfuran

H2O 87.5 100 Angew Chem Int Ed 61, 
e202209849 (2022)9

PtRhAu
Lignin monomer 

guaiacol to 
2-methoxycyclohexanol

H2O 58 120 J Am Chem Soc 143, 
17226-17235 (2021)10

RhPtRu Guaiacol to methoxy-
cyclohexanes H2O 62.8 100 Green Chem 24, 142-146 

(2022)11

Pd@CF Benzaldehyde to 
benzyl alcohol H2O ≥ 90.2 20 Adv Funct Mater, 

2214588 (2023)12

Pd–Mo 4-nitrostyrene to 4-
vinylaniline H2O 78.3 10 J Mater Chem A 11, 

7505-7512 (2023)13

CoP
Nitroarene to azoxy-, 

azo- and amino-
aromatics

H2O 99 20 Natl Sci Rev 7, 285-295 
(2019)14

Co3S4−x NS Nitroarenes to 
Aminoarenes H2O - 20 CCS Chem 3, 507-515 

(2021)15

Ru-PA/NF p-nitrophenol to 
p-aminophenol H2O 73 5 Int J Hydrogen Energy 

47, 2187-2199 (2022)16

NiBx
p-nitrophenol to 
p-aminophenol H2O ≥ 99 10 Angew Chem Int Ed 58, 

9155-9159 (2019)17

Cu(OH)2
p-nitrophenol to 
p-aminophenol NaBH4 96.8 10 ACS Catal 12, 1545-

1557 (2022)18

CuCo2O4/N
F

p-nitrophenol to
 p-aminophenol H2O 89 20 ACS Catal 12, 58-65 

(2021)19

NiFe-400 p-nitrophenol to 
p-aminophenol H2O ≥ 97 100 This work
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Figure S11. Photograph of the device used for in-situ XAFS measurements during 

electrocatalytic p-NP reduction.

In the context of in-situ XAFS testing, the first step involves collecting spectra of the 

electrode material in 1M KOH solution with and without 10 mM p-NP, respectively, while no 

applied voltage is present. Next, the suitable voltage is chosen for performing I-T testing, during 

which the spectra of the electrode material involved in the real-time p-NP reduction reaction 

are able to be gathered. 
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Figure S12. In-situ Fe K-edge EXAFS oscillation functions k3χ(k) for (A) NiFe-400 before and 

(B) during p-NP reduction. In-situ Ni K-edge EXAFS oscillation functions k3χ(k) for (C) NiFe-

400 before and (D) during p-NP reduction.
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Figure S13. In-situ XAFS for the electrocatalytic reduction of p-NP by NiFe-400. (A) Fe K-

edge XANES and (B) corresponding R-space plots during p-NP reduction. (C) Ni K-edge 

XANES and (D) corresponding R-space plots during p-NP reduction.
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Figure S14. In-situ Fe K-edge R-space plots with corresponding fitting results for NiFe-400 

at different stages of the p-NP reduction reaction.
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Table S4. Local structure parameters around Fe estimated by in-situ EXAFS analysis for 

NiFe-400 at stages of the p-NP reduction reaction.

sample shell N R(Å) σ2(10-3 Å2) R-factor(10-3)

Fresh Fe-O 3.96 1.97 9.00 12.3

KOH Fe-O 4.42 2.04 1.75 10.4

KOH+ p-NP Fe-O 4.67 2.01 1.00 13.6

Start 100s Fe-O 4.71 2.00 1.05 11.8

Start 500s Fe-O 4.74 2.00 0.10 9.42

Start 1000s Fe-O 4.74 2.01 0.15 11.63

Start 1500s Fe-O 4.75 2.02 0.15 4.44

N = coordination number; R = average distance between absorber and backscatter atoms; σ2 = 

Debye-Waller factor.



20

Figure S15. In-situ Ni K-edge R-space plots with corresponding fitting results for NiFe-400 

at different stages of the p-NP reduction reaction.
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Table S5. Local structure parameters around Ni estimated by in-situ EXAFS analysis for 

NiFe-400 at different stages of the p-NP reduction reaction.

Sample Shell N R(Å) σ2(10-3 Å2) R-factor(10-3)

Fresh Ni-O 4.64 2.02 5.00 10.0

KOH Ni-O 4.63 2.05 5.20 16.0

KOH+ p-NP Ni-O 4.67 2.05 5.30 5.67

Start 100s Ni-O 4.69 2.04 3.15 7.21

Start 500s Ni-O 4.69 2.04 3.08 9.58

Start 1000s Ni-O 4.70 2.04 3.18 10.6

Start 1500s Ni-O 4.70 2.04 2.85 9.10

N= coordination number; R= average distance between absorber and backscatter atoms; σ2 = 

Debye-Waller factor. 
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Figure S16. FE of p-AP over C paper, Pt, Ni(OH)2, Fe(OH)3 and a mixed catalyst (3:1 Ni(OH)2: 

Fe(OH)3) at various potentials from -0.9 to -1.3 V vs. Ag/AgCl, respectively.
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Figure S17. Illustration of the optimized geometry of p-NP on Fe site and Ni site of NiFe-

LDH.
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Figure S18. Adsorption energies of p-NP on Fe site and Ni site of NiFe-LDH.
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Figure S19. Optimization of the reaction path for p-NP hydrogenation over NiFe-LDH-VO.
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Figure S20. Optimization of the reaction path for p-NP hydrogenation over NiFe-LDH. 



27

Figure S21. Optimized pathways for H* formation from H2O dissociation on NiFe-LDH-VO. 

IS initial state, TS transition state, FS final state.



28

Figure S22. Optimized pathways for H* formation from H2O dissociation on NiFe-LDH. IS 

initial state, TS transition state, FS final state.
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Figure S23. Energies profiles for H2O dissociation on (A) NiFe-LDH-VO and (B) NiFe-LDH.
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Figure S24. Differential charge density analysis for p-NP hydrogenation over NiFe-LDH-VO 

and NiFe-LDH. 
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Figure S25. Mulliken charge for p-NP hydrogenation over NiFe-LDH-VO and NiFe-LDH. 
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Figure S26. XRD pattern for NiCo-mono.
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Figure S27. HRTEM image of NiCo-mono.
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Figure S28. (A) LSV curves for NiCo-mono collected at a scan rate of 5 mV s−1 in 1.0 M KOH 

with and without 10 mM HMF. (B) FE of FDCA over NiCo-mono at various potentials from 

0.30 to 0.50 V vs. Ag/AgCl.
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Figure S29. Photograph of the electrochemical H-cell, with (left) HMF oxidation at the NiCo-

mono anode, and (right) p-NP reduction at the NiFe-400 cathode. The catholyte was 1.0 M 

KOH containing 10 mM HMF, and the anolyte 1.0 M KOH containing 10 mM p-NP.
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Figure S30. FE of FDCA using the paired electrolyzer at various potentials from -1.3 to -2.1 V 

of full voltage, respectively.
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Figure S31. FE of p-AP using the paired electrolyzer at various potentials from -1.3 to -2.1 V 

of full voltage, respectively.
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