Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Material

Machine learning facilitated by microscopic features for discovery of novel magnetic double perovskites

Shuping Guo, *
 a Ryan Morrow, a Jeroen van den Brink
, a,b and Oleg Janson *
 a

 $^a {\rm Leibniz}$ Institute for Solid State and Materials Research IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.

^bDepartment of Physics, Technical University Dresden, 01069 Dresden, Germany

*E-mail: shuping.guo@ifw-dresden.de, olegjanson@gmail.com

Compound	Space group	Order	Label	T_{c-Exp}	Θ_{Exp}	f_{Exp}
-				K	K	• = _F
Ba_2CeIrO_6	$P2_{1}/n$	AFM	-1	-17 [1]	-177 [1]	10.4
Ca_2CoTeO_6	$P2_1/n$	AFM	-1	-10 [2]	-78 [2]	7.80
Ca_2CoWO_6	$P2_1/n$	AFM	-1	-33 [3]	-68 [3]	2.06
Ca_2FeSbO_6	$P2_1/n$	AFM	-1	-17 [4]	-90 [4]	5.23
Ca_2InOsO_6	$P2_1/n$	AFM	-1	-14 [5]	-77 [5]	5.50
Ca_2LaRuO_6	$P2_1/n$	AFM	-1	-11.5 [6]	-115 [6]	10.0
Ca_2LuRuO_6	$P2_1/n$	AFM	-1	-14 [6]	-162 [6]	11.5
Ca_2MnWO_6	$P2_1/n$	AFM	-1	-45 [7]	-61.8 [7]	1.37
Ca_2NiWO_6	$P2_1/n$	AFM	-1	-52.5 [8]	-75 [8]	1.42
In_2NiMnO_6	$P2_1/n$	AFM	-1	-26 [9]		
La_2CoRuO_6	$P2_1/n$	AFM	-1	-25 [10]	-87 [10]	3.48
La_2CoTiO_6	$P2_1/n$	AFM	-1	-14.8 [11]	-45 [12]	
La_2LiRuO_6	$P2_1/n$	AFM	-1	-30 [13]	-185 [14]	6.16
La_2MgIrO_6	$P2_1/n$	AFM	-1	-12 [15]	-24 [15]	2.00
La_2NaOsO_6	$P2_1/n$	AFM	-1	-12 [16]	-74 [16]	6.16
La_2NaRuO_6	$P2_1/n$	AFM	-1	-15 [16]	-67 [17]	4.46
La_2NiIrO_6	$P2_1/n$	AFM	-1	-110 [18]	-36 [19]	0.32
La_2NiRuO_6	$P2_1/n$	AFM	-1	-20 [20]	-90 [20]	4.50
La_2NiTiO_6	$P2_1/n$	AFM	-1	-23 [21, 22]	-60 [21, 22]	2.60
La_2ZnIrO_6	$P2_1/n$	Canted AFM[23]	-1	-7.5 [15, 24]	-3.1 [15]	0.41
Mn_2MnReO_6	$P2_1/n$	AFM[25]				
Sr_2CaIrO_6	$P2_1/n$	AFM	-1	-58 [26]	-363.4 [26]	6.26
Sr_2CeIrO_6	$P2_1/n$	AFM	-1	-21 [27]	-108 [28]	5.14
Sr_2CoTeO_6	$P2_1/n$	AFM	-1	-15 [2]	-146 [2]	9.73
Sr_2DyRuO_6	$P2_1/n$	AFM	-1	-21.3 [29]	-20 [30]	
Sr_2FeWO_6	$P2_1/n$	AFM	-1	-37 [31]	-21.3 [31]	0.93
Sr_2GdRuO_6	$P2_1/n$	AFM	-1	-33 [32]	-8 [33]	0.24
Sr_2LuRuO_6	$P2_1/n$	AFM	-1	-32 [33]	-353 [34]	11.0
$\mathrm{Sr}_{2}\mathrm{MnMoO}_{6}$	$P2_1/n$	AFM	-1	-15 [35]	-163 [36]	10.8
$\mathrm{Sr}_{2}\mathrm{MnUO}_{6}$	$P2_1/n$	AFM	-1	-21 [37]		
$\mathrm{Sr}_{2}\mathrm{MnWO}_{6}$	$P2_1/n$	AFM	-1	-13.7 [35]	-71.3 [38]	5.20
Sr_2NiIrO_6	$P2_1/n$	AFM	-1	-58 [39]	-81 [40]	1.39
Sr_2NiUO_6	$P2_1/n$	AFM	-1	-21 [37]		
Sr_2ScReO_6	$P2_1/n$	AFM	-1	-75 [41]	-450 [41]	6.00
$\mathrm{Sr}_{2}\mathrm{TmRuO}_{6}$	$P2_1/n$	AFM	-1	-36 [42]	-47 [33]	1.30
Sr_2YbRuO_6	$P2_1/n$	AFM	-1	-44 [42]	-225 [33]	5.11
Sr_2YIrO_6	$P2_1/n$	AFM	-1	-1.3 [43]	-2.8 [44]	2.15
$\mathrm{Sr}_{2}\mathrm{ZnIrO}_{6}$	$P2_1/n$	AFM[45]	-1			
Y_2 Co MnO_6	$P2_1/n$	AFM[46]	-1		-80[47]	
Ba_2CaIrO_6	$Fm\overline{3}m$	AFM	-1	-55 [48]	-573[49]	10.4
Ba_2CaOsO_6	$Fm\overline{3}m$	AFM	-1	-50 [50, 22]	-156 [51]	3.12
$\mathrm{Ba}_2\mathrm{CaReO}_6$	$Fm\overline{3}m$	AFM	-1	-15.4 [51]	-41.5[52]	
$\operatorname{Ba_2CoReO_6}$	$Fm\overline{3}m$	AFM	-1	-41 [53]	-35 [53]	2.69

Table S1: Experimental magnetic order, label used in classification model, experimental transition temperature (T_{c-Exp}) , Curie-Weiss temperature (Θ_{Exp}) and frustrated factor (f_{Exp}) of AFM double perovskites.

Ba_2CoWO_6	$Fm\overline{3}m$	AFM	-1	-18 [3]	-75.2 [54]	4.17
Ba_2ErRuO_6	$Fm\overline{3}m$	AFM	-1	-40 [55]	-14.6 [55]	0.365
Ba_2LiOsO_6	$Fm\overline{3}m$	AFM	-1	-8 [56]	-40 [56]	5.00
Ba_2LuRuO_6	$Fm\overline{3}m$	AFM	-1	-35 [34]	-630 [34]	18.0
Ba_2MnWO_6	$Fm\overline{3}m$	AFM	-1	-9 [57]	-64.4 [57]	7.15
Ba_2MnMoO_6	$Fm\overline{3}m$	AFM	-1	-10 [58]	-94 [58]	
Ba_2NiWO_6	$Fm\overline{3}m$	AFM	-1	-48 [59]	-120 [59]	2.50
Ba_2PrIrO_6	$Fm\overline{3}m$	AFM	-1	-71 [60]	-43 [61]	0.60
Ba_2PrRuO_6	$Fm\overline{3}m$	AFM	-1	-117 [62]	-133 [62]	1.13
Ba_2YReO_6	$Fm\overline{3}m$	AFM[63]	-1		-616 [51]	
Ba_2YRuO_6	$Fm\overline{3}m$	AFM	-1	-36 [64]	-571 [64]	15.8
$\mathrm{Sr}_{2}\mathrm{ZrMnO}_{6}$	$Fm\overline{3}m$	AFM	-1	-50 [65]	-53.24 [65]	1.06
Ba_2CuOsO_6	I4/m	AFM	-1	-70 [66]	-13.3[66]	0.19
Ba_2CuWO_6	I4/m	Quasi-2D AFM	-1	-28 [67]	-180 [68]	6.42
Ba_2FeWO_6	I4/m	AFM	-1	-19 [69]		
Sr_2CoMoO_6	I4/m	AFM	-1	-37 [70]	-40 [35]	1.08
Sr_2CoOsO_6	I4/m	AFM	-1	-108 [71]	-51 [71]	0.47
Sr_2CoReO_6	I4/m	AFM	-1	-60 [72]	-140 [72]	2.33
Sr_2CoWO_6	I4/m	AFM	-1	-24 [3]	-57 [3]	2.37
Sr_2CuMoO_6	I4/m	AFM	-1	-28 [73]	-300 [73]	10.7
Sr_2CuOsO_6	I4/m	AFM	-1	-18 [74]	-40 [74]	2.22
Sr_2CuWO_6	I4/m	AFM	-1	-24 [73]	-230[75]	9.58
$\mathrm{Sr}_{2}\mathrm{MgOsO}_{6}$	I4/m	AFM	-1	-110 [22]	-347 [22]	3.15
$Sr_2NiMoO6$	I4/m	AFM	-1	-71.5 [76]	-260 [76]	3.63
Sr_2NiOsO_6	I4/m	AFM	-1	-50 [77]	$27 \ [77]$	0.54
$\mathrm{Sr}_2\mathrm{NiReO}_6$	I4/m	AFM	-1	-30 [72]		
Sr_2NiWO_6	I4/m	AFM	-1	-54 [78]	-175 [78]	3.24

Compound	Space group	Order	Label	T_{c-Exp}
			Κ	*
Ca_2CoReO_6	$P2_1/n$	\mathbf{FM}	1	130 [41]
Ca_2CrReO_6	$P2_1/n$	\mathbf{FM}	1	360[41]
Ca_2CrSbO_6	$P2_1/n$	\mathbf{FM}	1	13 [79]
Ca_2FeMoO_6	$P2_1/n$	FiM	1	380 [80]
$Ca_2 FeOsO_6$	$P2_1/n$	FiM	1	320 [81]
Ca_2FeReO_6	$P2_1/n$	FiM	1	540 [82]
Ca_2MnReO_6	$P2_1/n$	\mathbf{FM}	1	110 [41]
La_2CoMnO_6	$P2_1/n$	\mathbf{FM}	1	204 [83]
La_2NiMnO_6	$P2_1/n$	\mathbf{FM}	1	280 [84]
Lu_2NiMnO_6	$P2_1/n$	\mathbf{FM}	1	45 [85]
Sr_2FeUO_6	$P2_1/n$	FiM	1	150 [37]
$\mathrm{Sr}_{2}\mathrm{MnReO}_{6}$	$P2_1/n$	FiM	1	120 [41]
$\mathrm{Tm}_2\mathrm{NiMnO}_6$	$P2_1/n$	\mathbf{FM}	1	
$Y_2 Ni Mn O_6$	$P2_1/n$	\mathbf{FM}	1	$85 \ [86]$
Ba_2FeReO_6	$Fm\overline{3}m$	FiM	1	317 [87]
Ba_2FeUO_6	$Fm\overline{3}m$	FiM	1	120 [88]
Ba_2MnReO_6	$Fm\overline{3}m$	\mathbf{FM}	1	113 [89]
Ba_2NaOsO_6	$Fm\overline{3}m$	\mathbf{FM}	1	6.8 [90]
Ba_2NiReO_6	$Fm\overline{3}m$	\mathbf{FM}	1	32[89]
Ba_2NiUO_6	$Fm\overline{3}m$	\mathbf{FM}	1	25 [88]
Sr_2FeMoO_6	I4/m	FiM	1	400 [91]
$\mathrm{Sr}_{2}\mathrm{FeReO}_{6}$	I4/m	FiM	1	445 [92]

Table S2: Experimatal magnetic behavior, label used in classification model and transition temperature (T_{c-Exp}) of FM double perovskites.

Table S3: ML predicted magnetic transition temperature (T_{c-ML}) and recent experimental reports (T_{c-Exp}) of 7 FM candidates.

Compound	Space group	T_{c-ML}	T_{c-Exp}
		Κ	Κ
Bi_2NiMnO_6	$P2_1/n$	172	
Ca_2MgOsO_6	$P2_1/n$	52	-19 [22]
Sr_2CrSbO_6	$P2_1/n$	57	-12 [93]
Ba_2FeMoO_6	$Fm\overline{3}m$	209	345[94]
Ba_2NaReO_6	$Fm\overline{3}m$	34	
Ca_2TiSiO_6	$Fm\overline{3}m$	34	
$Ca_2 TiMnO_6$	I4/m	99	

Compound	Space group	T _{с-ML} К	Θ_{ML} K	f_{ML}	$\begin{array}{c} T_{c\text{-}Exp} \\ \mathrm{K} \end{array}$	$\begin{array}{c} \Theta_{Exp} \\ \mathrm{K} \end{array}$	f_{Exp}
Ba ₂ LaRuO ₆	$P2_{1}/n$	-30.7	-127.4	4.1			
Ca_2CaWO_6	$P2_1/n$	-28.6	-153.5	5.3			
Ca_2MgWO_6	$P2_1/n$	-28.7	-151.7	5.3			
Ca_2ScOsO_6	$P2_1/n$	-33.3	-201.9	6.0	-69 [95]	-341 [95]	
La_2CoPtO_6	$P2_1/n$	-34.7	-121.2	3.5	-28 96	-28 [96]	
La_2LiMoO_6	$P2_1/n$	-24.4	-121.3	4.9	-18 97	-59 97	
La_2LiReO_6	$P2_1/n$	-27.9	-172.0	6.1		-204 [98]	4 [99]
La_2MgPtO_6	$P2_1/n$	-33.3	-127.1	3.8			
La_2MgTiO_6	$P2_1/n$	-22.9	-107.1	4.6			
La_2MnVO_6	$P2_1/n$	-29.3	-70.4	2.4			
La_2NiPtO_6	$P2_1/n$	-36.9	-142.9	3.8			
Sr_2CaMoO_6	$P2_1/n$	-30.2	-179.1	5.9			
Sr_2CoReO_6	$P2_1/n$	-40.9	-75.4	1.8			
Sr_2CoWO_6	$P2_1/n$	-38.7	-75.6	1.9			
Sr_2MgIrO_6	$P2_1/n$	-33.1	-200.1	6.0	-74 [26]	-418 [26]	
Sr_2ScOsO_6	$P2_1/n$	-41.8	-273.4	6.5	-92 [100]	-677 [100]	
Y_2MgTiO_6	$P2_1/n$	-23.8	-96.1	4.0			
Ba_2CaMoO_6	$Fm\overline{3}m$	-41.8	-95.7	2.3			
Ba_2CdOsO_6	$Fm\overline{3}m$	-18.9	-134.9	7.1			
Ba_2CdReO_6	$Fm\overline{3}m$	-14.6	-75.8	5.1	-12 [101]	-15.3 [101]	
Ba_2EuReO_6	$Fm\overline{3}m$	-50.4	-572.7	11.3			
Ba_2LaReO_6	$Fm\overline{3}m$	-42.1	-521.6	12.4			
Ba_2LiReO_6	$Fm\overline{3}m$	-17.2	-70.0	4.0			
Ba_2MgOsO_6	$Fm\overline{3}m$	-43.1	-162.5	3.8	-53 [102]	-149 [102]	2 [102]
Ba_2MgWO_6	$Fm\overline{3}m$	-23.6	-87.3	3.7			
Ba_2LuReO_6	$Fm\overline{3}m$	-43.5	-485.2	11.1	-31 [103]	-678 [103]	
Ba_2ScRuO_6	$Fm\overline{3}m$ -HP	-38.9	-287.3	7.4	-44 [104]	-651 [104]	
Ba_2SmReO_6	$Fm\overline{3}m$	-48.1	-533.1	11.0			
Ba_2TbReO_6	$Fm\overline{3}m$	-51.1	-503.6	7.4			
Ba_2YbReO_6	$Fm\overline{3}m$	-49.4	-525.9	10.6			
Ba_2YOsO_6	$Fm\overline{3}m$	-44.2	-213.2	4.8	-69 [105]	-700 [105]	
Ba_2ZnOsO_6	$Fm\overline{3}m$	-17.3	-156.4	9.0			
Ba_2ZnReO_6	$Fm\overline{3}m$	-14.1	-71.5	5.0	$11 \; (FM) \; [106]$	-66 [106]	
Ba_2ZnWO_6	$Fm\overline{3}m$	-25.2	-93.4	3.7			
Sr_2GdReO_6	$Fm\overline{3}m$	-50.7	-505.6	9.9			
Sr_2LiReO_6	$Fm\overline{3}m$	-22.8	-84.5	3.7			
$\mathrm{Sr}_{2}\mathrm{MgIrO}_{6}$	$Fm\overline{3}m$	-31.4	-341.0	10.8	-80 [107]		
$\mathrm{Sr}_{2}\mathrm{TmReO}_{6}$	$Fm\overline{3}m$	-47.8	-516.5	10.7			
$\mathrm{Sr}_{2}\mathrm{YbReO}_{6}$	$Fm\overline{3}m$	-47.3	-511.2	10.8			
$\mathrm{Sr}_{2}\mathrm{YReO}_{6}$	$Fm\overline{3}m$	-46.6	-491.0	10.5			
$\mathrm{Sr}_{2}\mathrm{ZnWO}_{6}$	$Fm\overline{3}m$	-22.5	-53.8	2.4			
Ba_2CaReO_6	I4/m	-37.5	-201.4	5.3			
Sr_2CoWO_6	I4/m	-36.7	-57	1.5			

Table S4: ML predicted magnetic transition temperature (T_{c-ML}) , Curie-Weiss temperature (Θ_{ML}) , frustration factor (f_{ML}) and recent experimental reports $(T_{c-Exp}, \Theta_{Exp}, f_{Exp})$ of 45 AFM candidates.

Sr_2NiWO_6	I4/m	-44.1	-175	3.9	
$\mathrm{Sr}_{2}\mathrm{ZnReO}_{6}$	I4/m	-38.7	-187.8	4.8	

Resampled regression model of AFM/FM transition temperatures

Fig. S1: Magnetic transition temperature T_c by the regression models with randomly doubled 11 and 2 (3 and 1) training (testing) samples for the (a) antiferromagnetic and (b) ferromagnetic materials in comparison with the experimental value. The training and testing datasets are green and blue dots, respectively.

DFT+U+SOC calculations of cubic Ba_2LaReO_6

We performed DFT+U+SOC calculations on two magnetic configurations: FM (Fig. S2a) and AFM-I (Fig. S2b) type. AFM-I case is the experimental most observed pattern for cubic double perovskites, where in-plane NN are FM, while out-of-plane NN are AFM.

Fig. S2: (a) FM and (b) AFM-I configurations of cubic Ba₂LaReO₆.

DFT+U+SOC calculations of monoclinic Ba₂LaRuO₆

Low-symmetry monoclinc structure needs more magnetic configurations. Therefore, DFT+U+SOC calculations of 2*2*1 supercell on one FM and six AFM configurations are performed. $J_{d'}^{B'-B'}$ is considered the same as $J_d^{B'-B'}$ for simplication, leaving 4 $J_a^{B'-B'}S$, 4 $J_b^{B'-B'}$ and 32 $J_d^{B'-B'}$ for each configuration. The total energies by Heisenberg Hamiltonian can be written as $E_{FM} = E_0 + 4 J_a^{B'-B'}S^2 + 4 J_b^{B'-B'}S^2 + 32 J_d^{B'-B'}S^2$ $E_{AFM-I} = E_0 + 4 J_a^{B'-B'}S^2 + 4 J_b^{B'-B'}S^2 - 32 J_d^{B'-B'}S^2$ $E_{AFM-II} = E_0 + 4 J_a^{B'-B'}S^2 - 4 J_b^{B'-B'}S^2$ $E_{AFM-III} = E_0 + 4 J_a^{B'-B'}S^2 - 4 J_b^{B'-B'}S^2$ $E_{AFM-III} = E_0 + 4 J_a^{B'-B'}S^2 - 4 J_b^{B'-B'}S^2$ $E_{AFM-III} = E_0 + 4 J_a^{B'-B'}S^2 - 4 J_b^{B'-B'}S^2$ $E_{AFM-III} = E_0 - 4 J_a^{B'-B'}S^2 - 4 J_b^{B'-B'}S^2$ $E_{AFM-III} = E_0 - 4 J_a^{B'-B'}S^2 - 4 J_b^{B'-B'}S^2$ $E_{AFM-III} = E_0 - 4 J_a^{B'-B'}S^2 - 4 J_b^{B'-B'}S^2$ $E_{AFM-III} = E_0 - 4 J_a^{B'-B'}S^2 - 4 J_b^{B'-B'}S^2$ $E_{AFM-III} = E_0 - 4 J_a^{B'-B'}S^2 - 4 J_b^{B'-B'}S^2$ $E_{AFM-III} = E_0 - 4 J_a^{B'-B'}S^2 - 4 J_b^{B'-B'}S^2$ $E_{AFM-VI} = E_0 - 4 J_a^{B'-B'}S^2 - 4 J_b^{B'-B'}S^2$ $E_{AFM-VI} = E_0 - 8 J_d^{B'-B'}S^2$ $E_{AFM-VI} = E_0 - 8 J_a^{B'-B'}S^2$ where S is 3/2 for Ru. In Table S3, the DFT+U+SOC calculated total energies are compared with the counterpart Heisenberg Hamiltonians. The residual sum of squares is about 0.0044

with the counterpart Heisenberg Hamiltonians. The residual sum of squares is about 0.0044 meV. The $J_a^{B'-B'}$, $J_b^{B'-B'}$, $J_d^{B'-B'}$ and $J_{d'}^{B'-B'}$ are 2.12, 1.72, 0.93 and 0.93 meV (24.6, 20, 10.8 and 10.8 K).

Configuration	DFT+U+SOC	Heisenberg model
AFM-I	-135.21	-135.25
AFM-II	-102.44	-98.62
AFM-III	-102.44	-98.62
AFM-IV	-111.60	-105.88
AFM-V	-134.92	-136.87
AFM-VI	-121.23	-119.15

Table S5: The total energy differences (meV/f.u.) of six AFM congurations compared to that of FM configuration.

References

- [1] M. Wakeshima, D. Harada, Y. Hinatsu, J. Mater. Chem. 10, 419–422 (2000).
- [2] M. Augsburger, M. Viola, J. Pedregosa, A. Muñoz, J. Alonso, R. Carbonio, J. Mater. Chem. 15, 993–1001 (2005).
- [3] C. Lopez, M. Saleta, J. Curiale, R. D. Sánchez, Mater. Res. Bull. 47, 1158–1163 (2012).
- [4] P. D. Battle, T. C. Gibb, A. J. Herod, S.-H. Kim, P. H. Munns, J. Mater. Chem. 5, 865–870 (1995).
- [5] H. Feng, C. Sathish, J. Li, X. Wang, K. Yamaura, *Physics Procedia* 45, 117–120 (2013).
- [6] C. Sakai, Y. Doi, Y. Hinatsu, K. Ohoyama, J. Phys.: Condens. Matter 17, 7383 (2005).
- [7] A. Azad, S. Ivanov, S.-G. Eriksson, J. Eriksen, H. Rundlöf, R. Mathieu, P. Svedlindh, Mater. Res. Bull. 36, 2485–2496 (2001).
- [8] C. Lopez, J. Curiale, M. d. C. Viola, J. Pedregosa, R. Sanchez, *Phys. B: Condens. Matter* 398, 256–258 (2007).
- [9] W. Yi, Q. Liang, Y. Matsushita, M. Tanaka, A. A. Belik, *Inorg. Chem.* 52, 14108–14115 (2013).
- [10] J.-W. G. Bos, J. P. Attfield, J Mater. Chem. 15, 715–720 (2005).
- [11] K. L. Holman, Q. Huang, T. Klimczuk, K. Trzebiatowski, J. Bos, E. Morosan, J. Lynn, R. J. Cava, J. Solid State Chem. 180, 75–83 (2007).
- [12] D. D. Russell, Design, synthesis, crystal structure and magnetic properties of novel osmiumbased B-site ordered double perovskites (California State University, Long Beach, 2016).
- [13] P. D. Battle, C. P. Grey, M. Hervieu, C. Martin, C. A. Moore, Y. Paik, J. Solid State Chem. 175, 20–26 (2003).
- [14] T. Aharen, J. E. Greedan, F. Ning, T. Imai, V. Michaelis, S. Kroeker, H. Zhou, C. R. Wiebe, L. M. Cranswick, *Phys. Rev. B* 80, 134423 (2009).
- [15] G. Cao, A. Subedi, S. Calder, J.-Q. Yan, J. Yi, Z. Gai, L. Poudel, D. J. Singh, M. D. Lumsden, A. D. Christianson, et al., Phys. Rev. B 87, 155136 (2013).
- [16] A. A. Aczel, D. Bugaris, L. Li, J.-Q. Yan, C. De la Cruz, H.-C. zur Loye, S. E. Nagler, *Phys. Rev. B* 87, 014435 (2013).
- [17] W. R. Gemmill, M. D. Smith, H.-C. zur Loye, J. Solid State Chem. 177, 3560-3567 (2004).
- [18] R. Currie, J. Vente, E. Frikkee, D. Ijdo, J. Solid State Chem. 116, 199–204 (1995).
- [19] S. Sharma, C. Ritter, D. Adroja, G. Stenning, A. Sundaresan, S. Langridge, Phys. Rev. Mater. 6, 014407 (2022).
- [20] K. Yoshii, H. Abe, M. Mizumaki, H. Tanida, N. Kawamura, J. Alloys Compd. 348, 236–240 (2003).
- [21] E. Rodríguez, M. L. López, J. Campo, M. L. Veiga, C. Pico, J. Mater. Chem. 12, 2798–2802 (2002).

- [22] Y. Yuan, H. L. Feng, M. P. Ghimire, Y. Matsushita, Y. Tsujimoto, J. He, M. Tanaka, Y. Katsuya, K. Yamaura, *Inorg. Chem.* 54, 3422–3431 (2015).
- [23] H. Guo, C. Ritter, Y. Su, A. Komarek, J. Gardner, *Phys. Rev. B* 103, L060402 (2021).
- [24] P. Sharma, J. Fan, A. Kumar, B. K. De, Z. Tian, L. Zhang, H. Han, W. Liu, C. Ma, V. Sathe, et al., Ceram. International 48, 29190–29196 (2022).
- [25] M.-R. Li, J. P. Hodges, M. Retuerto, Z. Deng, P. W. Stephens, M. C. Croft, X. Deng, G. Kotliar, J. Sanchez-Benítez, D. Walker, et al., Chem. Mater. 28, 3148–3158 (2016).
- [26] P. Kayser, M. J. Martínez-Lope, J. A. Alonso, M. Retuerto, M. Croft, A. Ignatov, M. T. Fernández-Díaz, Eur. J. Inorg. Chem. 2014, 178–185 (2014).
- [27] D. Harada, M. Wakeshima, Y. Hinatsu, K. Ohoyama, Y. Yamaguchi, J. Phys. Condens. Matter 12, 3229 (2000).
- [28] S. Kanungo, K. Mogare, B. Yan, M. Reehuis, A. Hoser, C. Felser, M. Jansen, *Phys. Rev. B* 93, 245148 (2016).
- [29] C. Triana, D. L. Téllez, J. Roa-Rojas, Mater. Characterization 99, 128–141 (2015).
- [30] Y. Doi, Y. Hinatsu, J. Phys.: Condens. Matter 11, 4813 (1999).
- [31] H. Kawanaka, I. Hase, S. Toyama, Y. Nishihara, Phys. B: Condens. Matter 281, 518–520 (2000).
- [32] Z. Han, H. Mohottala, J. Budnick, W. Hines, P. Klamut, B. Dabrowski, M. Maxwell, J. Phys.: Condens. Matter 18, 2273 (2006).
- [33] Y. Doi, Y. Hinatsu, J. Phys. Condens. Matter 11, 4813 (1999).
- [34] P. Battle, C. Jones, J. Solid State Chem. 78, 108–116 (1989).
- [35] A. Munoz, J. Alonso, M. Casais, M. Martínez-Lope, M. Fernandez-Diaz, J. Phys. Condens. Matter 14, 8817 (2002).
- [36] M. Itoh, I. Ohta, Y. Inaguma, *Mater. Sci. Eng.*: B **41**, 55–58 (1996).
- [37] R. Pinacca, M. Viola, J. Pedregosa, M. Martínez-Lope, R. Carbonio, J. Alonso, J. Solid State Chem. 180, 1582–1589 (2007).
- [38] A. Azad, S. Ivanov, S.-G. Eriksson, H. Rundlöf, J. Eriksen, R. Mathieu, P. Svedlindh, J. Magn. Magn. Mater. 237, 124–134 (2001).
- [39] P. Kayser, M. Martínez-Lope, J. Alonso, M. Retuerto, M. Croft, A. Ignatov, M. Fernández-Díaz, *Inorg. Chem.* 52, 11013–11022 (2013).
- [40] K. Rolfs, S. Tóth, E. Pomjakushina, D. Adroja, D. Khalyavin, K. Conder, *Phys. Rev. B* 95, 140403 (2017).
- [41] H. Kato, T. Okuda, Y. Okimoto, Y. Tomioka, K. Oikawa, T. Kamiyama, Y. Tokura, *Phys. Rev. B* 69, 184412 (2004).
- [42] Y. Doi, Y. Hinatsu, A. Nakamura, Y. Ishii, Y. Morii, J. Mater. Chem. 13, 1758–1763 (2003).

- [43] G. Cao, T. Qi, L. Li, J. Terzic, S. Yuan, L. E. DeLong, G. Murthy, R. K. Kaul, Phys. Rev. Lett. 112, 056402 (2014).
- [44] L. Corredor, G. Aslan-Cansever, M. Sturza, K. Manna, A. Maljuk, S. Gass, A. Zimmermann, T. Dey, C. Blum, M. Geyer, et al., arXiv preprint arXiv:1606.05104 (2016).
- [45] M. Laguna-Marco, P. Kayser, J. Alonso, M. Martínez-Lope, M. Van Veenendaal, Y. Choi, D. Haskel, *Phys. Rev. B* **91**, 214433 (2015).
- [46] R. Das, R. Choudhary, Ceramics International 47, 439–448 (2021).
- [47] D. Gutierrez, O. Peña, K. Ghanimi, P. Duran, C. Moure, J. Phys. Chem. Solids 63, 1975– 1982 (2002).
- [48] J. Park, J. Park, I. Swainson, H. Ri, Y. Choi, C. Lee, D.-Y. Jung, J. Korean Phys. Soc. 41, 118–122 (2002).
- [49] J.-H. Choy, D.-K. Kim, S.-H. Hwang, G. Demazeau, D.-Y. Jung, J. Am. Chem. Soc. 117, 8557–8566 (1995).
- [50] C. Thompson, J. Carlo, R. Flacau, T. Aharen, I. Leahy, J. Pollichemi, T. Munsie, T. Medina, G. Luke, J. Munevar, et al., J. Phys. Condens. Matter 26, 306003 (2014).
- [51] K. Yamamura, M. Wakeshima, Y. Hinatsu, J. Solid State Chem. 179, 605–612 (2006).
- [52] H. Ishikawa, D. Hirai, A. Ikeda, M. Gen, T. Yajima, A. Matsuo, Y. H. Matsuda, Z. Hiroi, K. Kindo, *Phys. Rev. B* **104**, 174422 (2021).
- [53] A. Sleight, J. Weiher, J. Phys. Chem. Solids 33, 679–687 (1972).
- [54] M. J. Martínez-Lope, J. A. Alonso, M. T. Casais, M. T. Fernández-Díaz, Eur. J. Inorg. Chem. 2002, 2463–2469 (2002).
- [55] Y. Izumiyama, Y. Doi, M. Wakeshima, Y. Hinatsu, A. Nakamura, Y. Ishii, J. Solid State Chem. 169, 125–130 (2002).
- [56] K. E. Stitzer, M. D. Smith, H.-C. zur Loye, Solid State Sci. 4, 311–316 (2002).
- [57] A. Azad, S. Ivanov, S.-G. Eriksson, J. Eriksen, H. Rundlöf, R. Mathieu, P. Svedlindh, Mater. Res. Bull. 36, 2215–2228 (2001).
- [58] A. Azad, S.-G. Eriksson, S. Ivanov, R. Mathieu, P. Svedlindh, J. Eriksen, H. Rundlöf, J Alloys Compd. 364, 77–82 (2004).
- [59] Y. Todate, J. Phys. Chem. Solids 60, 1173–1175 (1999).
- [60] W. Kockelmann, D. Adroja, A. Hillier, M. Wakeshima, Y. Izumiyama, Y. Hinatsu, K. Knight, D. Visser, B. Rainford, *Phys. B: Condens. Matter* **378**, 543–545 (2006).
- [61] E. Ramos, I. Alvarez, R. Sáez-Puche, M. Veiga, C. Pico, J. Alloys Compd. 225, 212–215 (1995).
- [62] Y. Izumiyama, Y. Doi, M. Wakeshima, Y. Hinatsu, Y. Shimojo, Y. Morii, J. Phys.: Conden. Matter 13, 1303 (2001).
- [63] G. J. Nilsen, C. M. Thompson, C. Marjerisson, D. I. Badrtdinov, A. A. Tsirlin, J. E. Greedan, *Phys. Rev. B* 103, 104430 (2021).

- [64] T. Aharen, J. E. Greedan, F. Ning, T. Imai, V. Michaelis, S. Kroeker, H. Zhou, C. R. Wiebe, L. M. Cranswick, *Phys. Rev. B* 80, 134423 (2009).
- [65] D. Llamosa, D. L. Téllez, J. Roa-Rojas, Phys. B: Condens. Matter 404, 2726–2729 (2009).
- [66] H. L. Feng, M. Arai, Y. Matsushita, Y. Tsujimoto, Y. Yuan, C. I. Sathish, J. He, M. Tanaka, K. Yamaura, J. Solid State Chem. 217, 9–15 (2014).
- [67] Y. Todate, W. Higemoto, K. Nishiyama, K. Hirota, J. Phys. Chem. Solids 68, 2107–2110 (2007).
- [68] Y. Todate, J. Phys. Soc. Jpn. 70, 337–340 (2001).
- [69] J. P. Palakkal, P. N. Lekshmi, S. Thomas, M. Valant, K. Suresh, M. R. Varma, *Mater. Res. Bull.* 76, 161–168 (2016).
- [70] M. d. C. Viola, M. Martinez-Lope, J. Alonso, P. Velasco, J. Martinez, J. Pedregosa, R. Carbonio, M. Fernández-Díaz, *Chem. Mater.* 14, 812–818 (2002).
- [71] R. Morrow, R. Mishra, O. D. Restrepo, M. R. Ball, W. Windl, S. Wurmehl, U. Stockert, B. Buchner, P. M. Woodward, J. Am. Chem. Soc. 135, 18824–18830 (2013).
- [72] M. Retuerto, M. J. Martínez-Lope, M. García-Hernández, M. T. Fernández-Díaz, J. A. Alonso, Eur. J. Inorg. Chem. pp. 588–595 (2008).
- [73] S. Vasala, H. Saadaoui, E. Morenzoni, O. Chmaissem, T.-S. Chan, J.-M. Chen, Y.-Y. Hsu, H. Yamauchi, M. Karppinen, *Phys. Rev. B* 89, 134419 (2014).
- [74] M. W. Lufaso, W. R. Gemmill, S. J. Mugavero III, S.-J. Kim, Y. Lee, T. Vogt, H.-C. zur Loye, J. Solid State Chem. 181, 623–627 (2008).
- [75] G. Blasse, *Philips Res. Rep.* **20**, 327 (1965).
- [76] S. Nomura, T. Nakagawa, J. Phys. Soc. Japan 21, 1068–1071 (1966).
- [77] R. Macquart, S.-J. Kim, W. R. Gemmill, J. K. Stalick, Y. Lee, T. Vogt, H.-C. zur Loye, *Inorg. Chem.* 44, 9676–9683 (2005).
- [78] D. Iwanaga, Y. Inaguma, M. Itoh, Mater. Res. Bull. 35, 449–457 (2000).
- [79] M. Retuerto, J. Alonso, M. García-Hernández, M. Martínez-Lope, Solid State Commun. 139, 19–22 (2006).
- [80] J. Alonso, M. Casais, M. Martínez-Lope, J. Martínez, P. Velasco, A. Munoz, M. Fernández-Díaz, Chem. Mater. 12, 161–168 (2000).
- [81] H. L. Feng, M. Arai, Y. Matsushita, Y. Tsujimoto, Y. Guo, C. I. Sathish, X. Wang, Y.-H. Yuan, M. Tanaka, K. Yamaura, J. Am. Chem. Soc. 136, 3326–3329 (2014).
- [82] W. Westerburg, O. Lang, C. Ritter, C. Felser, W. Tremel, G. Jakob, Solid State Commun. 122, 201–206 (2002).
- [83] M. Kim, J. Moon, H. Choi, S. Oh, N. Lee, Y. Choi, Current Appl. Phys. 15, 776–779 (2015).
- [84] N. S. Rogado, J. Li, A. W. Sleight, M. A. Subramanian, Adv. Mater. 17, 2225–2227 (2005).

- [85] S. Chanda, S. Saha, A. Dutta, J. Krishna Murthy, A. Venimadhav, S. Shannigrahi, T. Sinha, J. Appl. Phys. 120, 134102 (2016).
- [86] M. Mouallem-Bahout, T. Roisnel, G. André, D. Gutierrez, C. Moure, O. Pena, Solid State Commun. 129, 255–260 (2004).
- [87] A. Winkler, N. Narayanan, D. Mikhailova, K. Bramnik, H. Ehrenberg, H. Fuess, G. Vaitheeswaran, V. Kanchana, F. Wilhelm, A. Rogalev, et al., New J. Phys. 11, 073047 (2009).
- [88] Y. Hinatsu, J. Alloys Compd. 215, 161–167 (1994).
- [89] N. Rammeh, H. Ehrenberg, H. Fuess, A. Cheikkh-Rouhou, Phys. Stat. Sol. C 3, 3225–3228 (2006).
- [90] A. Erickson, S. Misra, G. J. Miller, R. Gupta, Z. Schlesinger, W. Harrison, J. Kim, I. Fisher, *Phys. Rev. Lett.* 99, 016404 (2007).
- [91] Y. Moritomo, H. Kusuya, A. Machida, E. Nishibori, M. Takata, M. Sakata, A. Nakamura, J. Phys. Soc. Japan 70, 3182–3183 (2001).
- [92] M. Retuerto, M. Martínez-Lope, M. García-Hernández, J. Alonso, Mater. Res. Bull. 44, 1261–1264 (2009).
- [93] M. Retuerto, M. Garcia-Hernandez, M. Martínez-Lope, M. Fernandez-Diaz, J. Attfield, J. Alonso, J. Mater. Chem. 17, 3555–3561 (2007).
- [94] S. B. Kim, E. J. Hahn, C. S. Kim, J. Korean Phys. Soc. 75, 466–470 (2019).
- [95] D. D. Russell, A. J. Neer, B. C. Melot, S. Derakhshan, *Inorg. Chem.* 55, 2240–2245 (2016).
- [96] S. Lee, M.-C. Lee, Y. Ishikawa, P. Miao, S. Torii, C. Won, K. Lee, N. Hur, D.-Y. Cho, T. Kamiyama, ACS omega 3, 11624–11632 (2018).
- [97] M. Dragomir, A. A. Aczel, C. R. Wiebe, J. A. Lussier, P. Dube, J. E. Greedan, *Phys. Rev. Mater.* 4, 104406 (2020).
- [98] T. Aharen, J. E. Greedan, C. A. Bridges, A. A. Aczel, J. Rodriguez, G. MacDougall, G. M. Luke, V. K. Michaelis, S. Kroeker, C. R. Wiebe, et al., Phys. Rev. B 81, 064436 (2010).
- [99] F. Yuan, Z. W. Cronkwright, J. A. Lussier, C. R. Wiebe, P. A. Dube, C. M. Thompson, T. J. Munsie, G. M. Luke, J. E. Greedan, *Inorg. Chem.* **60**, 16652–16657 (2021).
- [100] A. Taylor, R. Morrow, D. Singh, S. Calder, M. Lumsden, P. Woodward, A. Christianson, *Phys. Rev. B* **91**, 100406 (2015).
- [101] D. Hirai, Z. Hiroi, J. Phys.: Conden. Matter 33, 135603 (2021).
- [102] C. Marjerrison, C. Thompson, A. Sharma, A. Hallas, M. Wilson, T. Munsie, R. Flacau, C. Wiebe, B. Gaulin, G. Luke, et al., Phys. Rev. B 94, 134429 (2016).
- [103] J. Xiong, J. Yan, A. A. Aczel, P. M. Woodward, J. Solid State Chem. 258, 762–767 (2018).
- [104] P. Kayser, S. Injac, B. Ranjbar, B. J. Kennedy, M. Avdeev, K. Yamaura, *Inorg. Chem.* 56, 9009–9018 (2017).

- [105] E. Kermarrec, C. A. Marjerrison, C. Thompson, D. D. Maharaj, K. Levin, S. Kroeker, G. E. Granroth, R. Flacau, Z. Yamani, J. E. Greedan, et al., Phys. Rev. B 91, 075133 (2015).
- [106] C. A. Marjerrison, C. M. Thompson, G. Sala, D. D. Maharaj, E. Kermarrec, Y. Cai, A. M. Hallas, M. N. Wilson, T. J. Munsie, G. E. Granroth, et al., Inorg. chem. 55, 10701–10713 (2016).
- [107] D.-Y. Jung, G. Demazeau, J. Solid State Chem. 115, 447–455 (1995).