Supporting Information

Adjustable Oil Adhesion on Superamphiphobic Copper Surfaces for

Controlled Oil Droplet Transport

Wen Si,^a Xin Dai,^a Shiping He,^a Zhiguang Guo*_{a,b}

^{a.} Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China

^bState Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.

*E-mail: <u>zguo@licp.cas.cn</u>; Fax: +86-931-8277088; Tel.: +86-931-4968105

Table S1.	Superoleophobicity	and	applications	of	superamphiphobic	copper	and	other	metal
surfaces in	the past five years.								

Materials	Modifier	Fabrication Methods	Repelled Liquids γ (mN m ⁻¹)	Application	Ref.
Cu	PTFE/PP	Dip Coating, Water Transfer Printing	Glycol (47.7)	Self-cleaning	[1]
Al Sheets and Pipes	FAS	Sol-gel; Spray Coating	Hexadecane (γ=27.4) Crude oil	Anti-waxing mechanism; Crude oil transportation (anti- crude oil)	[2]
Al alloys	PFDTES	One-step etching	Hexadecane (γ=27.4)	Anti-corrosion	[3]
Cu	PFOA	Compression molding; Simple oxidation	30% ethanol (γ =33.5)	Anti-corrosion	[4]
Cu	PFDT	Oxidation; Displacement reaction; Modification	30% ethanol (γ =33.5)	Anti-corrosion	[5]
Cu	FTS	Plasma activation	Diiodomethane (γ=70.21)	Anti-corrosion	[6]
Ni/Cu	PFOTS	Electrochemical-deposited	Glycol (47.7)	Anti-corrosion	[7]
Cu	PFDT	Laser marking Oxidation; Displacement reaction; Modification	Hexadecane (γ=27.4) Crude oil	Anti-corrosion; Adjustable oil adhesion; Controlled transportation of oil droplets	In this article

Table S2.	Laser	Marking	Parameter	Setting.
		• • •		• • •

Square groove (mm)	Incremental (mm)	Array	Marking times
0.01*0.01	0.01	750	10
0.02*0.02	0.01	500	10
0.03*0.03	0.01	375	10
0.04*0.04	0.01	300	10
0.05*0.05	0.01	250	10
0.06*0.06	0.01	215	10
0.07*0.07	0.01	188	10
0.08*0.08	0.01	167	10
0.09*0.09	0.01	150	10
0.1*0.1	0.01	137	10

	Water	Ethanediol	Glycerol	Sunflower oil
F-CuO	146±0.5°	141.3±0.7°	141.5±0.5	124.6±0.9°
F-CuO/Ag		145.7±2.7°	143.6±0.5°	140.8±0.7°
F-CuO/Ag -0.01	152.8±0.8*	154.8±1.3°	150.8±0.8°	145.8±0.8°
F-CuO/Ag -0.02	154.6±1.2°	152.7+1.6°	152.7±0.6°	150.9+0.7°
F-CuO/Ag -0.03	152.6±1.1°	150.2±0.2°	151.3±0.6°	151.3+0.3°
F-CuO/Ag -0.04	154.8+2.8	152±1.3°	150.5±0.2°	148.9+1.5°
F-CuO/Ag -0.05	152.9+0.9°	151.0±0.8°	152.2±0.9°	150.5±0.5°
F-CuO/Ag -0.06	153,5±1.3°	154,6±2.6°	153.3±0.8°	150.8±0.6°
F-CuO/Ag -0.07	151±1°	151.2±0.4°	150.3±2.1°	142.2±0.4°
F-CuO/Ag -0.08	151.1+0.4	152.3±2.5°	149.3±1.5°	147.2±3.2°
F-CuO/Ag -0.09	150.3±0.4°	151.5±1.2°	151.2±1.3°	142.1±0.6°
F-CuO/Ag -0.10	151.2+1.1°	149.9±0.7°	149.7+2.2°	144.8±1°

Figure S1. Optical photographs of the contact angles of F-CuO, F-CuO/Ag and F-CuO/Ag-0.01~0.1 on water, ethylene glycol, glycerol and colza oil.

Movie S1-S4 Self-cleaning and anti-fouling

- Movie S1. Self-cleaning methylene blue powder
- Movie S2. Self-cleaning carbon black powder
- Movie S3. Methylene blue stain for water
- Movie S4. Crude oil antifouling

Movie S5-S7 Controlled oil droplet transportation

Movie S5. Controlled Transportation of Glycerol

Movie S6. Controlled transportation of colza oil

Movie S7. Controlled transportation of n-Hexadecane

Movie S8. Controlled transportation of Crude oil

- K. Liao and J. Zhu, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639.
- 2. J. Peng, S. Yuan, H. Geng, X. Zhang, M. Zhang, F. Xu, D. Lin, Y. Gao and H. Wang, *Chemical Engineering Journal*, 2022, **428**.
- 3. Y. Li, W. Si and R. Gao, *Surface and Coatings Technology*, 2022, 430.
- 4. J. Zhu and K. Liao, *ACS Appl Mater Interfaces*, 2021, **13**, 37830-37839.
- 5. Q. Wen, F. Guo, Y. Peng and Z. Guo, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2018, **539**, 11-17.
- 6. J. Cai, T. Wang, W. Hao, H. Ling, T. Hang, Y.-W. Chung and M. Li, *Applied Surface Science*, 2019, **464**, 140-145.
- T. Wang, J. Cai, Y. Wu, T. Hang, A. Hu, H. Ling and M. Li, *ACS Appl Mater Interfaces*, 2019, 11, 11106-11111.