Supplementary Information

Controllable construction of Pt/CNT catalyst layers to improve the Pt utilization in PEMFC

Yabiao Pei,^a Weikang Zhu,^c Runfei Yue,^a Lianqin Wang,^{ab} Ran Li,^{d*} Junfeng Zhang,^{ab*} Yan

Yin^{ab*}

^a State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

^b National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin 300072, China

^c Low-carbon Environmental Protection Department, CATARC Automobile Inspection Center (Tianjin) Co., Ltd., Tianjin, 300392, China

^d Guangzhou CONE Hydrogen Energy Technology Co., Ltd. Guangzhou, 511356, China

*E-mail: J. Zhang (geosign@tju.edu.cn); Y. Yin (yanyin@tju.edu.cn);

R. Li (liran@chinacone.com)

Fig. S1. Dispersion state of CNTs with different aspect ratios in solvents, length (0.5-2 μ m), diameter: (a) 5-15 nm, (b) 30-50 nm, (c) 30-80 nm.

Fig. S2. TEM micrographs and Pt particle size distribution histograms (Insets) of (a) Pt/CNT-90, (b) Pt/CNT-120, (c) Pt/CNT-150 and (d) Pt/CNT-180.

Fig. S3. (a) XRD patterns, (b) Raman spectra, (c) XPS spectra of different catalysts, respectively.

Fig. S4. (a) LSV curves, (b) Tafel slopes, (c) Mass activity, and (d) ECSA of different catalysts, respectively. The durability tests of (e) Pt/CNT-120 and (e) commercial 60% Pt/C catalysts in O_2 -saturated 0.1 M HClO₄ before and after 3000 potential cycles.

Fig. S5. TEM images of different catalysts before and after AST of 10000 potential cycles. (a) and (b) are the Pt/CNT-120 and Pt/C of BOL, (c) and (d) are the corresponding images after AST, respectively.

 Table S1. The Pt Content of Pt/CNT catalysts by ICP.

Catalysts	Pt/CNT-90	Pt/CNT-120	Pt/CNT-150	Pt/CNT-180
Pt content (wt.%)	13.35	13.15	13.52	13.27

Table S2. The values of E_{onset} , $E_{1/2}$ (vs SCE), Tafel slope, Mass activity, and ECSA for various catalysts in 0.1 M HClO₄.

Catalysts	$E_{\rm onset}$ / V	$E_{1/2}$ / V	Tafel slope /	Mass activity /	ECSA /
			mV dec ⁻¹	$mA mg_{Pt}^{-1}$	$m^2 g_{Pt}^{-1}$
Pt/CNT-90	1.00	0.88	-63.6	56.9	53.6
Pt/CNT-120	1.02	0.92	-55.9	152.9	61.7
Pt/CNT-150	1.01	0.89	-68.3	91.3	56.1
Pt/CNT-180	1.01	0.89	-76.9	47.6	53.3
Pt/C	0.99	0.86	-80.5	42.4	62.6

Anode PGM loading	Cathode PGM loading	Membrane	Anode/ cathode gas	Back pressure (kPa)	PPD (mW cm ⁻²)	Mass PPD _{cathode} (W mg _{PGM} ⁻¹)	Mass PPD _{total} (W mg _{PGM} ⁻¹)	Ref.
(µg cm ⁻²)	(µg cm ⁻²)							
Pt/CNT (50)	Pt/CNT (50)	Gore	H_2/O_2	100	1015	20.3	10.2	This
		M788.12						work
Pt/CNT (50)	Pt/CNT (50)	Gore M788.12	H ₂ /Air	200	570	11.4	5.7	This work
Pt/C (200)	Pt/VACNT (50)	Nafion 211	H_2/O_2	150	1610	32.2	6.4	[1]
Pt/C (200)	Pt/VACNT (50)	Nafion 211	H ₂ /Air	200	860	17.2	3.4	[1]
Pt/Pd NNC (40.6)	Pt/Pd NNC (40.6)	Nafion 211	H_2/O_2	200	1210	29.8	14.9	[2]
Pt/C (160)	Pt-Ni nanotube (66)	Nafion 212	H_2/O_2	100	787	11.9	3.5	[3]
Pt/C (200)	PtCo/VACNT (65)	Nafion 211	H_2/O_2	150	1410	21.7	5.3	[4]
Pt nanocrowns (37.2)	Pt nanocrowns (53.3)	Nafion 211	H ₂ /O ₂	200	1010	19.1	11.1	[5]
Pt/C (300)	Pt nanotrough (42)	Nafion 212	H_2/O_2	200	935	22.4	2.7	[6]
Pt/C (200)	PtCo NTAs (52.7)	Nafion 212	H_2/O_2	200	758	14.3	3.0	[7]
Pt/C (100)	Pt-Tube (77)	Nafion HP	H_2/O_2	150	462	6.0	2.6	[8]
PtRu/C (60)	PtCo@CNTs- MOF (60)	Nafion HP	H_2/O_2	100	1020	17.0	8.5	[9]
Pt/C (200)	Pt _A @Fe _{SA} -N- C (130)	Nafion 211	H_2/O_2	100	1310	10.1	4.2	[10]
Pt/C (101)	PANI nanowires (95)	Nafion 212	H ₂ /O ₂	No	542	5.7	2.8	[11]
PtNi Nanobelt (108.9)	PtNi Nanobelt (108.9)	Gore M740.18	H ₂ /Air	200	598	5.5	2.8	[12]
Pt/C (100)	Pt-9.3@NPC (50)	Nafion 211	H ₂ /Air	200	860	17.2	5.7	[13]
Pt/C (100)	Pt-Ni BNSs/C (150)	Nafion 212	H ₂ /Air	207	920	6.1	3.9	[14]

Table S3. Comparisons of the performance and mass PPD based on cathodic/total PGMloading (mass $PPD_{cathode} / PPD_{total})$ in fuel cells.

Reference

- [1] Q.H. Meng, C. Hao, B. Yan, B. Yang, J. Liu, P.K. Shen, Z.Q. Tian, J. Energy Chem., 2022, 71, 497-506.
- [2] J. Qin, H. Liu, G. Han, Y. Lv, X. Wang, G. Zhang, Y. Song, Small, 2023, 2207155.
- [3] J. Liu, S. Liu, F. Yan, Z. Wen, W. Chen, X. Liu, Q. Liu, J. Shang, R. Yu, D. Su, J. Shui, J. Am. Chem. Soc., 2022, 144, 19106-19114.
- [4] X. Meng, X. Deng, L. Zhou, B. Hu, W. Tan, W. Zhou, M. Liu, Z. Shao, *Energ. Environ. Mater.* 2020, 4, 126-133.
- [5] H. Liu, J. Qin, T. Rockward, J. Wu, J. Li, G. Li, Q. Mao, Y. Lv, X. Wang, S. Zhang,
 W. Shi, G. Chen, Q. He, Y.-B. Jiang, H. Yu, R.L. Borup, Y. Wang, Y. Song, J. *Mater. Chem. A*, 2020, 8, 23284-23292.
- [6] M. Qi, Y. Zeng, M. Hou, Y. Gou, W. Song, H. Chen, G. Wu, Z. Jia, Y. Gao, H. Zhang, Z. Shao, *Appl. Catal. B-Environ.*, 2021, 298, 120504.
- [7] Y. Zeng, Z. Shao, H. Zhang, Z. Wang, S. Hong, H. Yu, B. Yi, *Nano Energy*, 2017, 34, 344-355.
- [8] R. Deng, Z. Xia, R. Sun, S. Wang, G. Sun, J. Energy Chem., 2020, 43, 33-39.
- [9] J. Wang, G. Wu, W. Wang, W. Xuan, J. Jiang, J. Wang, L. Li, W.-F. Lin, W. Ding, Z. Wei, J. Mater. Chem. A, 2019, 7, 19786.
- [10] X. Ao, W. Zhang, B. Zhao, Y. Ding, G. Nam, L. Soule, A. Abdelhafiz, C. Wang,
 M. Liu, *Energ. Environ. Sci.*, 2020, 13, 3032-3040.
- [11] R. Sun, Z. Xia, L. Shang, X. Fu, H. Li, S. Wang, G. Sun, J. Mater. Chem. A, 2017, 5, 15260-15265.
- [12] D. Yao, H. Yu, W. Song, X. Gao, X. Sun, G. Jiang, J. Hao, Z. Shao, ACS Appl. Energ. Mater., 2021, 4, 10703-10712.
- [13] S. Zhu, X. Wang, E. Luo, L. Yang, Y. Chu, L. Gao, Z. Jin, C. Liu, J. Ge, W. Xing, ACS Energy Lett. 2020, 5, 3021-3028.
- [14] X. Tian, X. Zhao, Y-Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, Emiel J.M. Hensen, X. Wen(David) Lou, B.Y. Xia, *Science*, 2019, 366, 850-856.