Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Computational insight into effective decomposition of NO_X gas pollutants using N-vacancies in graphitic carbon nitride

Yuewen Yang¹, Yanling Zhao^{1*}, Ruiqin Zhang^{1,2*}

¹ Department of Physics, City University of Hong Kong, Hong Kong SAR 999077, China

² Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518131, China

*Corresponding authors:

Prof. Rui-Qin Zhang (aprqz@cityu.edu.hk), Dr. Yanling Zhao (apzyl@cityu.edu.hk)

Authors

Rui-Qin Zhang – Department of Physics, City University of Hong Kong, Hong Kong SAR 999077, China; Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518131, China; orcid.org/0000-0001-6897-4010. E-mail: aprqz@cityu.edu.hk.

Yanling Zhao – Department of Physics, City University of Hong Kong, Hong Kong SAR 999077, China; orcid.org/0000-0001-5840-9149. E-mail: apzyl@cityu.edu.hk.

Yuewen Yang – Department of Physics, City University of Hong Kong, Hong Kong SAR 999077, China; orcid.org/0000-0003-0914-5276.

No.	Methods		Advantages	Disadvantages		
1	Selective catalytic reduction (SCR) ^{S1}	$\begin{array}{c} \text{NH}_3\text{-}\text{SCR}^{\text{S2}}\\ \text{H}_2\text{-}\text{SCR}^{\text{S3}}\\ \text{HC}\text{-}\text{SCR}^{\text{S4}}\\ \text{CO}\text{-}\text{SCR}^{\text{S5}} \end{array}$	High efficiency (>90%)	High cost, the complex system at high operation temperature (e.g., 400 °C for MnO_x^{S6})		
2	Selective non-catal (SNCR) ^{S7}	ytic reduction	Catalyst-free, non-toxic products (e.g., H ₂ O and N ₂)	High temperature (850-1100°C)		
3	Wet scrubbing met	hod ^{S8}	Catalyst-free	Product liquid waste and need large multi- stage scrubbers		
4	Electron beam ^{S9}		High ratio NO _X reduction (about 95% ^{S10})	Complexity of equipment structure, and shielding and preventing problems of radiation		
5	Adsorption method	ls ^{S11}	Cheap adsorbents (e.g., Zeolites ^{S11})	Huge amount of water and complex facilities		
6	Electrochemical me	ethod ^{S12}	Cost-effective, selective NO_X conversion of more than 70%	Producing NO ₃ -		
7	Non-thermal plasm	a ^{S13}	Simultaneous treatment of pollutants, rapid start and stop, low capital and operation costs, good scalability, and integration with existing systems	The reactor's structure parameters significantly affect the characteristics of non- thermal plasma and pollutant removal efficiency.		

Table S1. Summary of current methods for NOx removal.

[S1] Y. Sun, E. Zwolińska and A. G. Chmielewski, Abatement technologies for high concentrations of NOx and SO₂ removal from exhaust gases: a review, *Critical Reviews in Environmental Science and Technology* **2016**, 46 (2): 119-142.

[S2] F. Gao, X. Tang, H. Yi, S. Zhao, C. Li, J. Li, *et al.*, A review on selective catalytic reduction of NO_X by NH_3 over Mn-based catalysts at low temperatures: catalysts, mechanisms, kinetics and DFT calculations, *Catalysts* **2017**, 7, 7.

[S3] Z. Hu and R. T. Yang, 110th anniversary: recent progress and future challenges in selective catalytic reduction of NO by H_2 in the presence of O_2 , *Industrial & Engineering Chemistry Research* **2019**, 58 (24): 10140-10153.

[S4] F. Gunnarsson, J. A. Pihl, T. J. Toops, M. Skoglundh and H. Härelind, Lean NO_x reduction over Ag/alumina catalysts via ethanol-SCR using ethanol/gasoline blends, *Applied Catalysis B: Environmental* **2017**, 202, 42-50.

[S5] T. Liu, J. Qian, Y. Yao, Z. Shi, L. Han, C. Liang, *et al.*, Research on SCR of NO with CO over the Cu_{0.1}La_{0.1}Ce_{0.8}O mixed-oxide catalysts: effect of the grinding, *Molecular Catalysis* **2017**, 43, 43-53.

[S6] C. Liu, F. Li, J. Wu, X. Hou, W. Huang, Y. Zhang, *et al.*, A comparative study of MO_x (M = Mn, Co, and Cu) modifications over CePO₄ catalysts for selective catalytic reduction of NO with NH₃, *Journal of Hazardous Materials* **2019**, 363, 439-446.

[S7] M. Pronobis, R. Wejkowski, K. Jagodzińska and T. Kress, Simplified method for calculating SNCR system efficiency, *E3S Web of Conferences 2017 EDP Sciences* Pages: 02003.

[S8] B. R. Deshwal, S. H. Lee, J. H. Jung, B. H. Shon and H. K. Lee, Study on the removal of NOx from simulated flue gas using acidic NaClO₂ solution, *Journal of Environmental Sciences* **2008**, 20 (1): 33-38.

[S9] A. Basfar, O. Fageeha, N. Kunnummal, A. Chmielewski, J. Licki, A. Pawelec, *et al.*, A review on electron beam flue gas treatment (EBFGT) as a multicomponent air pollution control technology, *Nukleonika* **2010**, 55, 271-277.

[S10] J. Licki, A. G. Chmielewski, A. Pawelec, Z. Zimek and S. Witman, Electron beam treatment of exhaust gas with high NO_x concentration, *Physica Scripta* **2014**, T161, 014067.

[S11] F. Rezaei, A. A. Rownaghi, S. Monjezi, R. P. Lively and C. W. Jones, SO_x/NO_x removal from flue gas streams by solid adsorbents: a review of current challenges and future directions, *Energy & Fuels* **2015**, 29 (9): 5467-5486.

[S12] J. Shao, Y. Tao and K. K. Hansen, Highly selective NOx reduction for diesel engine exhaust via an electrochemical system, *Electrochemistry Communications* **2016**, 72, 36-40.

[S13] P. Talebizadeh, M. Babaie, R. Brown, H. Rahimzadeh, Z. Ristovski and M. Arai, The role of non-thermal plasma technique in NO_X treatment: A review, *Renewable and Sustainable Energy Reviews* **2014**, 40, 886-901.

Figure S1. The band structure and density of states for (a) pristine g-CN and (b) g-CN_{NV} (N_{2C}) calculated by HSE06 hybrid functional.

Figure S2. Frontier molecular orbitals (MO) of NO, NO₂, Heptazine_{NV}, and Heptazine clusters before their gas-solid interactions: (a) lowest unoccupied MO (LUMO) and nearby LUMO+1 in α and β states for NO; (b) LUMO and LUMO+1 in α and β states for NO₂; (c) highest occupied MO (HOMO) and nearby HOMO-1 in α and β states for Heptazine_{NV} with N_{2C}; (d) HOMO and HOMO-1 for Heptazine. The isovalues of all MOs are set as 0.08 a.u. to give a clear illustration.

Figure S3. Key interatomic distance evolutions of D_{C1-C2} , D_{C1-N} , D_{C2-N} , and D_{N-O} during the N-intercalation of NO into Heptazine_{NV} in the ground state (S₀) by (a) ω B97XD/6-31G(d,p) and (b) ω B97XD/aug-cc-pVDZ. UV–vis absorption spectra of O@Heptazine calculated by (c) TD- ω B97XD/6-31G(d,p) and (d) TD- ω B97XD/aug-cc-pVDZ, with the significant light-absorption peaks of S₁₂ at 204.72 nm and S₁₆ at 204.69 nm marked. UV–vis absorption spectra of ¹O₂@Heptazine calculated by (e) TD- ω B97XD/6-31G(d,p) and (f) TD- ω B97XD/aug-cc-pVDZ, with the significant light-absorption peaks of S₁₇ at 205.72 nm and S₁₂ at 230.33 nm marked.

Table S2. The energy data (Unit: eV) for the oxygen release from Heptazine as the function of D_{N-O2} during the NO decomposition.

D _{N-O2}	E (S ₀ , relaxed scan)	E (S ₁ , rigid scan)	E (T ₁ , rigid scan)	E (T ₀ , rigid scan)	E (T ₀ , relaxed scan)	E (S ₀ , relaxed scan)	E (S ₁ , rigid scan)	E (T ₁ , rigid scan)	E (T ₀ , rigid scan)	E (T ₀ , relaxed scan)
	by ωB97XD/6-31G(d,p)				by ωB97XD/aug-cc-pVDZ					
1.38	-3.24	-0.32	0.04	-0.36	-1.79	-3.11	-0.01	0.19	-0.21	1.46
1.4	-3.24	-0.33	0.03	-0.36	-1.83	-3.11	-0.02	0.19	-0.26	-1.58
1.5	-3.18	-0.25	-0.34	-0.36	-2.18	-3.02	0.07	-0.07	-0.19	-1.93
1.6	-3.17	-0.95	-1.77	-0.48	-2.64	-2.97	-0.70	-1.47	-0.08	-2.39
1.7	-3.25				-3.19	-3.02				-2.93
1.8	-3.38				-3.72	-3.13				-3.46
1.9	-3.52				-4.17	-3.25				-3.91
2.0	-3.63				-4.53	-3.36				-4.28
2.1	-3.71				-4.81	-3.45				-4.55
2.2	-3.77				-5.02	-3.51				-4.76
2.3	-3.81				-5.16	-3.58				-4.91
2.4	-3.83				-5.27	-3.62				-5.02
2.5	-3.84				-5.34	-3.64				-5.09
2.6	-3.85				-5.39	-3.65				-5.15
2.7	-3.85				-5.42	-3.65				-5.19
2.8	-3.85				-5.44	-3.65				-5.21
2.9	-3.85				-5.46	-3.65				-5.23
3.0	-3.85				-5.48	-3.65				-5.25

Figure S4. (a-d) Key interatomic distance evolutions of D_{C1-C2} , D_{C1-N} , D_{C2-N} , and D_{O1-N} during the N-intercalation of NO₂ into Heptazine_{NV} by IRC calculations of ω B97XD/6-31G(d,p) and ω B97XD/aug-cc-pVDZ in the ground state (S₀). (e, f) Key interatomic distance evolutions of D_{C1-O1} , D_{N-O2} , and D_{O1-O2} during the ¹O₂ formation on Heptazine by IRC calculations of ω B97XD/6-31G(d,p) and ω B97XD/6-31G(d,p) and ω B97XD/6-31G(d,p) and ω B97XD/aug-cc-pVDZ in S₀.

Reaction coordinate (NO, decomposition)

Figure S5. Gibbs free energy profiles of (a) NO and (b) NO₂ decompositions on Heptazine_{NV} at T = 500 K and P = 1.00 atm by ω B97XD/6-31G(d,p) calculations. The free energy values relative to the initial reactants of NO/NO₂ and Heptazine_{NV} are labelled to indicate the barrier (*G_b*) and change (ΔG) for each step.

Figure S6. The total energy changes of g-CN_{NV} (N_{2C}) during AIMD simulations of 10ps with a time step of 2fs at (a) T = 500K and (b) T = 700K, with the final configurations of g-CN_{NV} (N_{2C}) at 10ps inserted. Top views and side views (bottom right) of adsorption configurations of (c) CO and (d) SO₂ on g-CN_{NV} (N_{2C}) by GGA/PBE optimizations, with the charges (Q) on CO/SO₂ and adsorption energies (ΔE_{ads}) marked.

Table S3. The Gibbs free energy changes (ΔG in eV) and free energy barriers (G_b in eV) for
NO and NO ₂ decompositions on Heptazine _{NV} at $T = 300$ K and 500 K under $P = 1.00$ atm by
ωB97XD/6-31G(d,p) calculations.

Gas-solid reactions between NO/NO ₂ and Heptazine _{NV}		T = 300 K		T = 500 K	
NO decomposition	G _b	$\Delta \boldsymbol{G}$	G _b	$\Delta \boldsymbol{G}$	
NO+Heptazine _{NV} (S ₀) \rightarrow NO@Heptazine _{NV} (S ₀)		-1.65		-1.30	
NO@Heptazine _{NV} (S ₀) \rightarrow O@Heptazine (S ₀)	0.92	-0.93	0.93	-1.43	
$O@Heptazine (S_0) \rightarrow O@Heptazine (S_1)$		2.95		3.00	
$O@Heptazine (S_1) \rightarrow O + Heptazine (S_0)$	0.66	-2.90	0.60	-3.10	
$O + O@Heptazine (S_0) \rightarrow 2O@Heptazine (S_0)$	—	-0.85		-0.77	
20@Heptazine $(S_0) \rightarrow O_2$ @Heptazine (S_0)	—	-3.13		-3.08	
O_2 @Heptazine (S ₀) \rightarrow O_2 @Heptazine (S ₁)		2.75		2.73	
O_2 @Heptazine (S ₁) \rightarrow O_2 @Heptazine (T ₁)		-0.74		-0.69	
O_2 (a) Heptazine (T ₁) \rightarrow ³ O_2 + Heptazine (T ₀)		-4.72		-5.12	
NO ₂ decomposition	G _b	$\Delta \boldsymbol{G}$	G _b	$\Delta \boldsymbol{G}$	
NO_2 +Heptazine _{NV} (S ₀) \rightarrow NO ₂ @Heptazine _{NV} (S ₀)		-1.30		-0.88	
$NO_2@Heptazine_{NV}(S_0) \rightarrow O\text{-linked-NO}_2@Heptazine_{NV}(S_0)$	0.77	-0.03	0.98	-0.04	
$O\text{-linked-NO}_2 @ \text{Heptazine}_{NV}(S_0) \rightarrow N\text{-intercalation}(S_0)$	1.40	-0.52	1.42	-0.54	
N-intercalation $(S_0) \rightarrow 2O@$ Heptazine (S_0)	2.89	2.32	2.95	2.39	
20@Heptazine $(S_0) \rightarrow O_2$ @Heptazine (S_0)	0.35	0.01	0.43	0.25	
O_2 @Heptazine (S ₀) \rightarrow O_2 @Heptazine (S ₁)	—	2.75		2.73	
O_2 @Heptazine (S ₁) \rightarrow O_2 @Heptazine (T ₁)		-0.74		-0.69	
O_2 (a) Heptazine (T ₁) \rightarrow ³ O_2 + Heptazine (T ₀)		-4.72		-5.12	