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Table S1. Summary of current methods for NOx removal.

No. Methods Advantages Disadvantages

NH3-SCRS2

H2-SCRS3

HC-SCRS4

1 Selective catalytic 
reduction (SCR)S1 

CO-SCRS5

High efficiency (>90%) High cost, the complex 
system at high 
operation temperature 
(e.g., 400 ℃ for 
MnOx

S6)

2 Selective non-catalytic reduction 
(SNCR)S7

Catalyst-free, non-toxic 
products (e.g., H2O and 
N2)

High temperature 
(850-1100℃)

3 Wet scrubbing methodS8 Catalyst-free Product liquid waste 
and need large multi-
stage scrubbers

4 Electron beamS9 High ratio NOX 
reduction (about 
95%S10)

Complexity of 
equipment structure, 
and shielding and 
preventing problems 
of radiation

5 Adsorption  methodsS11 Cheap adsorbents (e.g., 
ZeolitesS11)

Huge amount of water 
and complex facilities

6 Electrochemical methodS12 Cost-effective, selective 
NOX conversion of 
more than 70%

Producing NO3
- 

7 Non-thermal plasmaS13 Simultaneous treatment 
of pollutants, rapid start 
and stop, low capital 
and operation costs, 
good scalability, and 
integration with 
existing systems

The reactor’s structure 
parameters 
significantly affect the 
characteristics of non-
thermal plasma and 
pollutant removal 
efficiency.
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Figure S1. The band structure and density of states for (a) pristine g-CN and (b) g-CNNV (N2C) 

calculated by HSE06 hybrid functional. 
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Figure S2. Frontier molecular orbitals (MO) of NO, NO2, HeptazineNV, and Heptazine clusters 

before their gas-solid interactions: (a) lowest unoccupied MO (LUMO) and nearby LUMO+1 

in  and  states for NO; (b) LUMO and LUMO+1 in  and  states for NO2; (c) highest 

occupied MO (HOMO) and nearby HOMO-1 in  and  states for HeptazineNV with N2C; (d) 

HOMO and HOMO-1 for Heptazine. The isovalues of all MOs are set as 0.08 a.u. to give a 

clear illustration.
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Figure S3. Key interatomic distance evolutions of DC1-C2, DC1-N, DC2-N, and DN-O during the N-

intercalation of NO into HeptazineNV in the ground state (S0) by (a) ωB97XD/6-31G(d,p) and 

(b) ωB97XD/aug-cc-pVDZ. UV–vis absorption spectra of O@Heptazine calculated by (c) TD-

ωB97XD/6-31G(d,p) and (d) TD-ωB97XD/aug-cc-pVDZ, with the significant light-

absorption peaks of S12 at 204.72 nm and S16 at 204.69 nm marked. UV–vis absorption spectra 

of 1O2@Heptazine calculated by (e) TD-ωB97XD/6-31G(d,p) and (f) TD-ωB97XD/aug-cc-

pVDZ, with the significant light-absorption peaks of S17 at 205.72 nm and S12 at 230.33 nm 

marked.
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Table S2. The energy data (Unit: eV) for the oxygen release from Heptazine as the function of 

DNO2 during the NO decomposition.

E (S0, 
relaxed 
scan)

E (S1, 
rigid 
scan)

E (T1, 
rigid 
scan)

E (T0, 
rigid 
scan)

E (T0, 
relaxed 
scan)

E (S0, 
relaxed 
scan)

E (S1, 
rigid 
scan)

E (T1, 
rigid 
scan)

E (T0, 
rigid 
scan)

E (T0, 
relaxed 
scan)

DNO2

by ωB97XD/6-31G(d,p) by ωB97XD/aug-cc-pVDZ

1.38 -3.24 -0.32 0.04 -0.36 -1.79 -3.11 -0.01 0.19 -0.21 1.46

1.4 -3.24 -0.33 0.03 -0.36 -1.83 -3.11 -0.02 0.19 -0.26 -1.58

1.5 -3.18 -0.25 -0.34 -0.36 -2.18 -3.02 0.07 -0.07 -0.19 -1.93

1.6 -3.17 -0.95 -1.77 -0.48 -2.64 -2.97 -0.70 -1.47 -0.08 -2.39

1.7 -3.25 -3.19 -3.02 -2.93

1.8 -3.38 -3.72 -3.13 -3.46

1.9 -3.52 -4.17 -3.25 -3.91

2.0 -3.63 -4.53 -3.36 -4.28

2.1 -3.71 -4.81 -3.45 -4.55

2.2 -3.77 -5.02 -3.51 -4.76

2.3 -3.81 -5.16 -3.58 -4.91

2.4 -3.83 -5.27 -3.62 -5.02

2.5 -3.84 -5.34 -3.64 -5.09

2.6 -3.85 -5.39 -3.65 -5.15

2.7 -3.85 -5.42 -3.65 -5.19

2.8 -3.85 -5.44 -3.65 -5.21

2.9 -3.85 -5.46 -3.65 -5.23

3.0 -3.85 -5.48 -3.65 -5.25
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Figure S4. (a-d) Key interatomic distance evolutions of DC1-C2, DC1-N, DC2-N, and DO1-N during 

the N-intercalation of NO2 into HeptazineNV by IRC calculations of ωB97XD/6-31G(d,p) and 

ωB97XD/aug-cc-pVDZ in the ground state (S0). (e, f) Key interatomic distance evolutions of 

DC1-O1, DN-O2, and DO1-O2 during the 1O2 formation on Heptazine by IRC calculations of 

ωB97XD/6-31G(d,p) and ωB97XD/aug-cc-pVDZ in S0.
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Figure S5. Gibbs free energy profiles of (a) NO and (b) NO2 decompositions on HeptazineNV 

at T = 500 K and P = 1.00 atm by ωB97XD/6-31G(d,p) calculations. The free energy values 

relative to the initial reactants of NO/NO2 and HeptazineNV are labelled to indicate the barrier 

(Gb) and change (∆G) for each step.
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Figure S6. The total energy changes of g-CNNV (N2C) during AIMD simulations of 10ps with 

a time step of 2fs at (a) T = 500K and (b) T = 700K, with the final configurations of g-CNNV 

(N2C) at 10ps inserted. Top views and side views (bottom right) of adsorption configurations 

of (c) CO and (d) SO2 on g-CNNV (N2C) by GGA/PBE optimizations, with the charges (Q) on 

CO/SO2 and adsorption energies (ΔEads) marked.
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Table S3. The Gibbs free energy changes (∆G in eV) and free energy barriers (Gb in eV) for 

NO and  NO2 decompositions on HeptazineNV at T = 300 K and 500 K under P = 1.00 atm by 

ωB97XD/6-31G(d,p) calculations.

Gas-solid reactions between NO/NO2 and HeptazineNV T = 300 K T = 500 K

NO decomposition Gb ∆G Gb ∆G

NO+HeptazineNV (S0) → NO@HeptazineNV (S0) __ -1.65 __ -1.30

NO@HeptazineNV (S0) → O@Heptazine (S0) 0.92 -0.93 0.93 -1.43

O@Heptazine (S0) → O@Heptazine (S1) __ 2.95 __ 3.00

O@Heptazine (S1) → O + Heptazine (S0) 0.66 -2.90 0.60 -3.10

O + O@Heptazine (S0) → 2O@Heptazine (S0) __ -0.85 __ -0.77

2O@Heptazine (S0) → O2@Heptazine (S0) __ -3.13 __ -3.08

O2@Heptazine (S0) → O2@Heptazine (S1) __ 2.75 __ 2.73

O2@Heptazine (S1) → O2@Heptazine (T1) __ -0.74 __ -0.69

O2@Heptazine (T1) → 3O2 + Heptazine (T0) __ -4.72 __ -5.12

NO2 decomposition Gb ∆G Gb ∆G

NO2+HeptazineNV (S0) → NO2@HeptazineNV (S0) __ -1.30 __ -0.88

NO2@HeptazineNV (S0) → O-linked-NO2@HeptazineNV (S0) 0.77 -0.03 0.98 -0.04

O-linked-NO2@HeptazineNV (S0) → N-intercalation (S0) 1.40 -0.52 1.42 -0.54

N-intercalation (S0) → 2O@Heptazine (S0) 2.89 2.32 2.95 2.39

2O@Heptazine (S0) → O2@Heptazine (S0) 0.35 0.01 0.43 0.25

O2@Heptazine (S0) → O2@Heptazine (S1) __ 2.75 __ 2.73

O2@Heptazine (S1) → O2@Heptazine (T1) __ -0.74 __ -0.69

O2@Heptazine (T1) → 3O2 + Heptazine (T0) __ -4.72 __ -5.12


