Supporting Information

Ru_xCr_{1-x}O_y Fiber-in-Tube as Highly Efficient Electrocatalysts for pH-Universal Water Oxidation *via* Facile Bubble Desorption

Chaewon Song,¹ Dasol Jin,¹ Subin Choi, Youngmi Lee*

Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic

of Korea

¹Equally contributed to this work

*Corresponding author: youngmilee@ewha.ac.kr (Y. L.)

Fig. S1. SEM images of synthesized (a,b) Ru/RuO_2 and (c,d) Cr_2O_3 .

Catalyst	Atomic %			
Catalyst	Ru	Cr		
Ru _x Cr _{1-x} O _y _5	45.98 (± 1.08)	54.02 (± 1.08)		
Ru _x Cr _{1-x} O _y _20	47.00 (± 1.04)	53.00 (± 1.04)		
Ru _x Cr _{1-x} O _y _50	45.74 (± 0.69)	54.26 (± 0.69)		
Ru _x Cr _{1-x} O _y _100	46.50 (± 0.68)	53.50 (± 0.68)		

Table S1. EDS analysis results for the $\mathbf{Ru}_{x}\mathbf{Cr}_{1-x}\mathbf{O}_{y}$ **NFs** (mean ± standard deviation), which were analyzed at more than 20 places.

Fig. S2. The relative atomic composition ratios (Ru/Cr) for the $Ru_xCr_{1-x}O_y_n$, which were analyzed at more than 20 places through EDS.

Fig. S3. (a,b) Low-magnification TEM images, (c) HRTEM image and (d) SAED pattern of Ru/RuO_2 .

Fig. S4. TEM analysis results of $Ru_xCr_{1-x}O_y_20$: (a) Low-magnification TEM image and (b-d) elemental mapping analysis of O (green), Ru (red), Cr (cyan).

Fig. S5. TEM analysis results of (a-c) Ru/RuO_2 (d-f) Cr_2O_3 : (a,d) Low-magnification TEM images and (b,c,e,f) elemental mapping analysis of O (green), Ru (red), Cr (cyan).

Fig. S6. Thermogravimetric analysis (TGA) curves of (a) $RuCl_3/PVP$ as-spun and (b) $RuCl_3+CrCl_3/PVP$ as-spun.

Catalyst	Ru _x Cr _{1-x} O _y _5	Ru _x Cr _{1-x} O _y _20	Ru _x Cr _{1-x} O _y _50	Ru _x Cr _{1-x} O _y _100
FWHM (2 0)	1.60	1.34	0.407	0.382
Crystallite size (nm)	5.34	6.38	21.00	22.38

Table S2. Full width at half maximum (FWHM) and crystallite sizes of Ru_xCr_{1-x}O_y_n.

Fig. S7. XPS spectra of the synthesized nanomaterials: $Ru_xCr_{1-x}O_y_n$ NFs (n = 5, 20, 50, 100) and Ru/RuO_2 for Ru 3d.

Fig. S8. XPS spectra of the synthesized nanomaterials: $Ru_xCr_{1-x}O_y_n$ (*n* = 5, 20, 50, 100) and Cr_2O_3 for Cr 2p.

Table S3. Elemental profiling of $Ru_xCr_{1-x}O_y_20$ using XPS etching technique. Note that the unit for the elemental distribution is in atomic percent (%).

Catalyst	Non etching (Surface)		15 s etching		30 s etching				
	Ru	Cr	ο	Ru	Cr	о	Ru	Cr	0
Ru _x Cr _{1-x} O _y _20	13.55	14.35	72.10	15.63	16.02	68.35	16.81	16.66	66.53

Table S4. Comparison of the mass activities of the samples at 1.49 V (*vs.* RHE) in 1 M KOH, 0.5 M PBS (pH 7.2) and 0.5 M H_2SO_4 solutions.

Solution	Sample	Mass activity (A cm ⁻² mg _{Ru or Ir} ⁻¹)
	$Ru_xCr_{1-x}O_y_20$	0.1
I W KOH	Ir/C	0.1
0.5 M PBS	Ru _x Cr _{1-x} O _y _20	0.04
(pH 7.2)	Ir/C	0.01
	Ru _x Cr _{1-x} O _y _20	0.3
0.5 IVI H ₂ SO ₄	lr/C	0.2

Table S5. Comparison of Tafel slopes and potentials of $Ru_xCr_{1-x}O_y_n$ at current density of 10 mA cm⁻² for the synthesized nanomaterials and Ir/C in pH-universal aqueous solutions.

Electrolyte	Catalyst	Potential@10 mA cm ⁻² (V vs. RHE)	Tafel slope (mV dec⁻¹)
	$Ru_xCr_{1-x}O_y_5$	1.48	40.4
	$Ru_xCr_{1-x}O_y_20$	1.47	37.5
	$Ru_xCr_{1-x}O_y_50$	1.56	74.0
1 M KOH	$Ru_xCr_{1-x}O_y_100$	1.59	85.9
	RuO ₂ /Ru	1.51	99.7
	Cr_2O_3	2.46	322.6
	Ir/C	1.53	52.7
0.5 M PBS (pH 7.2)	$Ru_xCr_{1-x}O_y_5$	1.49	75.7
	$Ru_xCr_{1-x}O_y_20$	1.49	68.9
	$Ru_xCr_{1-x}O_y_50$	1.58	112.1
	$Ru_xCr_{1-x}O_y_100$	1.63	140.5
(1)	RuO ₂ /Ru	1.58	115.8
	Cr_2O_3	2.61	343.3
	Ir/C	1.73	306.7
	$Ru_xCr_{1-x}O_y_5$	1.44	43.1
0.5 M H₂SO₄	$Ru_xCr_{1-x}O_y_20$	1.44	40.8
	$Ru_xCr_{1-x}O_y_50$	1.48	58.6
	$Ru_xCr_{1-x}O_y_100$	1.48	76.2
	RuO ₂ /Ru	1.48	48.8
	Cr_2O_3	2.34	273.2
	Ir/C	1.52	67.1

Table S6. Comparison of the Tafel slope and overpotential corresponding to 10 mA cm⁻² for $Ru_xCr_{1-x}O_y$ _20 and other previously reported Ru-based electrocatalysts in alkaline media.

Catalyst	Electrolyt e	Overpotential (mV) @10mA cm ⁻²	Tafel slope (mV dec⁻¹)	Referenc e
Ru _x Cr _{1-x} O _y _20	1 M KOH	240	37.5	This work
^a Co-Ru-Py@500	1 M KOH	230	50	[67]
∕ [₽] Ru/Co-N-C-800 ^{°C}	1 M KOH	276	55.7	[56]
^c RuNi ₁ Co ₁ @CMT	1 M KOH	299	83	[68]
^d D-RuO ₂ /TiO ₂ /TM	1 M KOH	296	46.6	[69]
^e HP-RuO ₂	1 M KOH	242	62	[57]
^f RuCu NSs	1 M KOH	234	43	[70]
^g RulrO _x	1 M KOH	250	50	[18]
^h Ru-H ₂ O/CC-350	1 M KOH	266	73.45	[71]
ⁱ Ru/NF-2	1 M KOH	330	62	[72]

^{*a*}Co-Ru-Py@500 represents RuO₂-CoO_x nanoparticles with an ultra-thin coated carbon layer. ^{*b*}Ru/Co-N-C-800^{°C} represents atomically dispersed Ru/Co on the nitrogen–carbon support. ^{*c*}RuNi₁Co₁@CMT represents ruthenium-nickel-cobalt alloy nanoparticles embedded in the hollow carbon tubes. ^{*d*}D-RuO₂/TiO₂/TM represents a defective RuO₂/TiO₂ nano-heterostructure catalyst on Ti mesh. ^{*e*}HP-RuO₂ represents the hierarchical porous nanostructures riveted with ultrafine Ru nanoclusters. ^{*f*}RuCu NSs represents channel rich RuCu nanosheets. ^{*g*}RuIrO_x represents RuIrO_x (x ≥ 0) nano-netcage catalyst. ^{*h*}Ru-H₂O/CC-350 represents Ru nanoparticles on carbon cloth. ^{*i*}Ru/NF-2 represents Ru-loaded Ni foam. Table S7. Comparison of the Tafel slope and overpotential corresponding to 10 mA cm⁻² for $Ru_xCr_{1-x}O_y$ _20 and other previously reported Ru-based electrocatalysts in neutral media.

Catalyst	Electrolyte	Overpotential (mV) @10mA cm ⁻²	Tafel slope (mV dec ^{−1})	Reference
Ru _x Cr _{1-x} O _y _20	0.5 M PBS	260	68.9	This work
^a Ru@Co-B/NF	0.5 M PBS	257	105.3	[61]
^b HP-RuO ₂	1.0 M PBS	262	93	[57]
°a/c-RuO₂	1 M PBS	287	82.9	[16]
[⊿] Ni/RuO _x @C	1 M PBS	316	89	[59]
^e Ru _{0.5} Ir _{0.5}	1.0 M PBS	248	127	[62]
^f RuO ₂ /Co ₃ O ₄	1 M PBS	365	53	[63]
^g SCN-Ru- RuO ₂ /C ₃ N ₄ -2	1 M PBS (pH=7.0)	342	92	[64]
^h RuCo@CDs	1.0 M PBS	410	147.4	[65]
ⁱ Ru-RuO ₂ /CNT	1.0 M PBS	275	97	[66]

^{*a*}Ru@Co-B/NF represents ruthenium modified cobalt boride on Ni foil. ^{*b*}HP-RuO₂ represents the hierarchical porous nanostructures riveted with ultrafine Ru nanoclusters. ^{*c*}a/c-RuO₂ represents amorphous/crystalline heterophase rutile-structured RuO₂. ^{*d*}Ni/RuO_x@C represents Ru/RuO₂/NiO nanoparticles into N-doped carbon matrix. ^{*e*}Ru_{0.5}Ir_{0.5} represents unsupported Ru_{0.5}Ir_{0.5} alloy. ^{*f*}RuO₂/Co₃O₄ represents RuO₂-decorated Co₃O₄ nanorod arrays. ^{*g*}SCN-Ru-RuO₂/C₃N₄-2 represents the thiocyanate modified Ru–RuO₂/C₃N₄. ^{*h*}RuCo@CDs represents Ru with Co-doped carbon dots. ^{*i*}Ru-RuO₂/CNT represents Ru-RuO₂ hybrid nanoparticles decorating carbon nanotube composites. Table S8. Comparison of the Tafel slope and overpotential corresponding to 10 mA cm⁻² for $Ru_xCr_{1-x}O_y$ _20 and other previously reported Ru-based electrocatalysts in acidic media.

Catalyst	Electrolyte	Overpotential (mV) @10mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Reference
Ru _x Cr _{1-x} O _y _20	0.5 M H ₂ SO ₄	210	40.8	This work
^o Cr _{0.6} Ru _{0.4} O ₂ (550)	0.5 M H ₂ SO ₄	178	58	[43]
^b Cu-RuO ₂ -300	0.5 M H ₂ SO ₄	201	55	[54]
SS Pt-RuO2° HNSs	0.5 M H ₂ SO ₄	228	51.0	[55]
[⊿] Ru/Co-N-C-800 ℃	0.5 M H ₂ SO ₄	232	67.5	[56]
^e HP-RuO ₂	0.5 M H ₂ SO ₄	209	72	[57]
^f Ru₃Ni₃ NAs	0.5 M H ₂ SO ₄	252	45.8	[58]
^g Ni/RuO _x @C	0.5 M H ₂ SO ₄	211	46	[59]
^h RulrTe NTs	0.5 M H ₂ SO ₄	205	41.2	[60]
ⁱ RulrO _x	0.5 M H ₂ SO ₄	233	42	[18]
^j RuOCl@MnO _x	0.5 M H ₂ SO ₄	228	43	[73]

 ${}^{a}Cr_{0.6}Ru_{0.4}O_{2}$ (550) represents rutile structured chromium-ruthenium oxide. ${}^{b}Cu-RuO_{2}$ -300 represents Cu-doped RuO₂. ^cSS Pt-RuO₂ HNSs represents single-site Pt-doped RuO₂ hollow nanospheres. ${}^{d}Ru/Co-N-C-800$ °C represents atomically dispersed Ru/Co on the nitrogen–carbon support. ${}^{e}HP$ -RuO₂ represents the hierarchical porous nanostructures riveted with ultrafine Ru nanoclusters. ${}^{f}Ru_{3}Ni_{3}$ NAs represents Ru-Ni nanosheet assemblies. ${}^{g}Ni/RuO_{x}@C$ represents peroxidized NiRu alloy nanoparticles into N-doped carbon matrix. ${}^{h}RuIrTe$ NTs represents RuIrTe nanotubes. ${}^{i}RuIrO_{x}$ represents RuIrO_x (x \geq 0) nano-netcage catalyst.

|--|

	Specific		OER performance			
Reference	catalyst structure	Synthesis method	Tafel Slope	Overpotentia I at 10 mA cm ⁻²	Stability	
This study	Fiber-in- tube shaped Ru _x Cr _{1-x} O _y _20	(1) Electrospinning (2) O ₂ -Calcination	 (1) Alkaline : 37.5 mV dec⁻¹ (2) Neutral : 68.9 mV dec⁻¹ (3) Acidic : 40.8 mV dec⁻¹ 	(1) Alkaline : 240 mV (<i>vs</i> . RHE) (2) Neutral : 260 mV (<i>vs</i> . RHE) (3) Acidic : 210 mV (<i>vs</i> . RHE)	Spontaneous OER performance using chronopotentiome tric technique for 20 hours under pH-universal conditions. Following the extended OER operation, physicochemical analysis of the catalysts was carried out to verify their structural stability.	
[74]	Nanonee dle structure of P-Ce SAs@CoO	 (1) Ar plasma process (2) Ce-ion electrodeposition (3) Vacancy- assisted anchoring method 	75 mV dec ^{−1} in alkaline condition	261 mV	Chronoamperomet ric current-time (<i>i</i> -t) test for 27 hours, and basic structural unit and composition of the catalyst after stability test were verified.	
[75]	Nanonee dle arrays for Ce- CoP@CC	(1) Thermal reaction using Teflon-lined steel reactor (2) Phosphorization	50.39 mV dec ⁻¹ in alkaline condition	240 mV	Chronoamperomet ric current-time (<i>i</i> -t) test for 27 hours, and basic structural and surface chemical state of the catalyst after stability test were verified.	

Fig. S9. SEM images of (a) $Ru_{0.73}Cr_{0.27}O_y$, (b) $Ru_{0.47}Cr_{0.53}O_y$ and (c) $Ru_{0.27}Cr_{0.73}O_y$, respectively. Note that $Ru_xCr_{1-x}O_y$ _20 was represented as $Ru_{0.47}Cr_{0.53}O_y$ with chemical formulas corresponding to their molar ratios for the purpose of comparison.

Fig. S10. Comparison of OER performances in Ar-saturated aqueous solution of (a,d) 1.0 M KOH, (b,e) 0.5 M PBS (pH 7.2) and (c,f) 0.5 M H₂SO₄: (a-c) RDE polarization curves with *i*R compensation obtained using GC electrodes modified with $Ru_xCr_{1-x}O_y$ (x = 0.27, 0.47 and 0.73) at a scan rate of 10 mV s⁻¹ and a rotating speed of 1600 rpm. (d–f) The corresponding Tafel plots for the OER obtained from RDE curves recorded at 1 mV s⁻¹.

Electrolyte	Catalyst	Potential@10 mA cm ⁻² (V vs. RHE)	Tafel slope (mV dec⁻¹)
	$Ru_{0.73}Cr_{0.27}O_{y}$	1.50	52.9
1.0 M KOH	$Ru_{0.43}Cr_{0.57}O_y$	1.47	37.5
	$Ru_{0.27}Cr_{0.73}O_y$	1.52	56.4
	$Ru_{0.73}Cr_{0.27}O_y$	1.54	105.2
0.5 М PBS (рН 7.2)	$Ru_{0.43}Cr_{0.57}O_y$	1.49	68.9
	$Ru_{0.27}Cr_{0.73}O_y$	1.52	164.9
	$Ru_{0.73}Cr_{0.27}O_y$	1.46	42.8
0.5 M H ₂ SO ₄	$Ru_{0.43}Cr_{0.57}O_y$	1.44	40.8
	$Ru_{0.27}Cr_{0.73}O_y$	1.46	45.5

Table S10. Comparison of the OER activities of the synthesized nanomaterials composed of various Ru/Cr ratios in 1.0 M KOH, 0.5 M PBS (pH 7.2) and 0.5 M

 H_2SO_4 media.

Fig. S11. Cyclic voltammograms of (a-c) $Ru_x Cr_{1-x}O_y$ _20, (d-e) Ru/RuO_2 and (g-i) Cr_2O_3 in (a,d,g) 1 M KOH, (b,e,h) 0.5 M PBS (pH 7.2) and (c,f,i) 0.5 M H₂SO₄ at various scan rates of 10, 20, 50, 100, 150 and 200 mV s⁻¹.

Fig. S12. Cyclic voltammograms of $Ru_xCr_{1-x}O_y_n$ measured in (a) 1 M KOH, (b) 0.5 M PBS (pH 7.2) and (c) 0.5 M H₂SO₄ solutions at a scan rate of 200 mV s⁻¹. The plots of cathodic-anodic current difference (Δi) versus various scan rate (10, 20, 50, 100, 150, 200 mV s⁻¹) were obtained in (d) 1 M KOH, (e) 0.5 M PBS (pH 7.2) and (f) 0.5 M H₂SO₄.

Fig. S13. Equivalent circuit diagram for EIS analysis.

Fig. S14. XRD patterns of $Ru_xCr_{1-x}O_y$ _20 after stability test for 20 h under universal pH conditions (i.e., 1 M KOH, 0.5 M PBS (pH 7.2) and 0.5 M H₂SO₄).

Fig. S15. (a) SEM image, (b) Low-magnification TEM image, (c) HRTEM image and (d) SAED pattern of $Ru_xCr_{1-x}O_y$ _20 after stability test in 1 M KOH aqueous solution for 20 h.

Fig. S16. High resolution XPS spectra of (a-c) Ru 3d and (d-f) Cr 2p regions for $Ru_xCr_{1-x}O_y$ _20 after stability test for 20 h in (a,d) 1 M KOH, (b,e) 0.5 M PBS (pH 7.2) and (c,f) 0.5 M H₂SO₄ solutions, respectively.

Fig. S17. Chronopotentiometric monitoring of generated O_2 gas desorption for (a) Ru_xCr_{1-x}O_y_5, (b) Ru_xCr_{1-x}O_y_20, (c) Ru_xCr_{1-x}O_y_50, (d) Ru_xCr_{1-x}O_y_100, (e) RuO₂/Ru and (f) Cr₂O₃ in 1 M KOH aqueous solution. Constant current of 5 mA cm⁻² was applied for 1000-s continuous OER.

Fig. S18. Chronopotentiometric monitoring of generated O_2 gas desorption for (a) Ru_xCr_{1-x}O_y_5, (b) Ru_xCr_{1-x}O_y_20, (c) Ru_xCr_{1-x}O_y_50, (d) Ru_xCr_{1-x}O_y_100, (e) Ru/RuO₂ and (f) Cr₂O₃ in 0.5 M PBS (pH 7.2) aqueous solution. Constant current of 5 mA cm⁻² was applied for 1000-s continuous OER (Insets: potential changes measured between 300 and 500 s).

Fig. S19. Chronopotentiometric monitoring of generated O_2 gas desorption for (a) Ru_xCr_{1-x}O_y_5, (b) Ru_xCr_{1-x}O_y_20, (c) Ru_xCr_{1-x}O_y_50, (d) Ru_xCr_{1-x}O_y_100, (e) Ru/RuO₂ and (f) Cr₂O₃ in 0.5 M H₂SO₄ aqueous solution. Constant current of 5 mA cm⁻² was applied for 1000-s continuous OER (Insets: potential changes measured between 300 and 500 s).