Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.

Supporting Information

High mass loading porous CoNi₂S₄ nanosheets with ultrahigh areal

capacity for flexible supercapacitors

Qian Chen,^{a,b} Ziqiang Wu,^{a,b} Lili Zhu,^{a,b} Changdian Li,^{a,b} Xuebin Zhu,^{*ab} Yuping

Sun^{a,c,d}

^aKey Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese

Academy of Sciences, Hefei 230031, China

^bUniversity of Science and Technology of China, Hefei 230026, China

^cHigh Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei

230031, China

^dCollaborative Innovation Center of Advanced Microstructures, Nanjing University,

Nanjing 210093, China

*Corresponding author.

E-mail addresses: <u>xbzhu@issp.ac.cn (X. Z)</u>.

Fig. S1 FE-SEM image of (a, e) Ni-1000, (b, f) Co-1000, (c, g) NiCo2-1000 and (d, h) CoNi2-1000.

Fig. S2 The variation curve of current with time in electrodeposition process.

Fig. S3 FE-SEM image of (a) $CoNi_2S_4$ -200, (b) $CoNi_2S_4$ -500 and (c) $CoNi_2S_4$ -1500.

Fig. S4 Elemental mappings of (a) CoNi2-1000 and (b) NiCo2-1000 for Co, Ni and O.

Fig. S5 EDX spectrum of (a) NiCo2-1000 and (b) CoNi2-1000.

Fig. S6 Elemental mappings of $CoNi_2S_4$ -1000 for (a) C and O.

Fig. S7 XRD pattern of CoNi2-200, CoNi2-500, CoNi2-1000 and CoNi2-1500.

Fig. S8 XRD pattern of Ni₃S₄-1000, Co₃S₄-1000 and NiCo₂S₄-1000.

Fig. S9 XPS spectra spectrum for CoNi₂S₄-1000.

Fig. S10 CV curves of (a) Ni_3S_4 -1000, (b) Co_3S_4 -1000 and (c) $NiCo_2S_4$ -1000 electrodes obtained at

various scan rates. GCD profiles of (d) Ni_3S_4 -1000, (e) Co_3S_4 -1000 and (f) $NiCo_2S_4$ -1000 electrodes

obtained at different current densities.

Fig. S11 GCD curves of the $CoNi_2S_4$ -200, $CoNi_2S_4$ -500, $CoNi_2S_4$ -1000 and $CoNi_2S_4$ -1500 electrodes, respectively.

Fig. S12 CV curves of (a) CoNi₂S₄-200, (b) CoNi₂S₄-500, (c) CoNi₂S₄-1000 and (d) CoNi₂S₄-1500 electrodes obtained at various scan rates. GCD profiles of (e) CoNi₂S₄-200, (f) CoNi₂S₄-500, (g) CoNi₂S₄-1000 and (h) CoNi₂S₄-1500 electrodes obtained at different current densities.

Fig. S13 SEM image of CoNi₂S₄-1500 electrode after cyclic stability test.

Electrode material	Ni ₃ S ₄ -1000	Co ₃ S ₄ -1000	NiCo ₂ S ₄ -1000	CoNi ₂ S ₄ -1000
Mass loading before vulcanization (mg cm ⁻²)	13.00	8.60	9.06	13.06
Mass loading after vulcanization (mg cm ⁻²)	11.20	8.73	9.20	13.40
Areal capacity (C cm ⁻²)	3.16	1.12	2.96	8.08
gravimetric capacity (C g ⁻¹)	281.1	128.3	321.7	603.0

Table S1 Areal capacity and gravimetric capacity of Ni_3S_4 -1000, Co_3S_4 -1000, $NiCo_2S_4$ -1000 and

Table S2 Comparison of the electrochemical performance of the $CoNi_2S_4$ -1500 electrode with those

of similar materials reported in the previous literatures.

CoNi₂S₄-1000 electrodes.

Flastuada motorial	Mass	Areal	Gravimetric	Capacitance	Daf	
Electroue material	loading	capacity	capacity	retention	Kei.	

	(mg cm ⁻²)	(C cm ⁻²)	(C g ⁻¹)		
CoNi ₂ S ₄ -1500/CC	18.80	11.11	591.0	85% after 7,000 cycles at 50 mA cm ⁻²	This work
H-NiCoSe ₂	7.0	-	450	92.1% after 5,000 cycles at 10 A g ⁻¹	1
NiCo ₂ S ₄ /CC	10.76	5.23	486	84.47% after 5,000 cycles at 40 mA cm ⁻²	2
Ni-Co-S/CC	8.84	2.82	319	95% after 3,000 cycles at 10 A g^{-1}	3
NiCo ₂ S ₄ /NF	9.984	6.49	650	92% after 1,500 cycles at 20 mA cm ⁻²	4
Ni-decorated Co ₉ S ₈	8.84	2.82	319	89% after 8,000 cycles at 10 A g ⁻¹	5
NiCo ₂ S ₄ @MoS ₂ /NF	11	4.43	356.66	88.9% after 6,000 cycles at 15 mA cm ⁻²	6
CoNi ₂ S ₄ /CC	14.8	10.87	734	88.8% after 5,000 cycles at 70 mA cm ⁻²	7
NiCo ₂ S ₄ /NF	18.7	5.39	288	-	8
NiCo ₂ S ₄ /NF	6	7.91	1318.3	99% after 5,000 cycles at 50 mA cm ⁻²	9

References

- 1 L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma, X. Sun, J. Sun, X. Zhang and C. Yuan, *Advanced Functional Materials*, 2018, **28**, 1705921.
- 2 X. Yu, J. Yu, W. Zhang, Q. Lv, W. Ren, L. Hou, Y. Fautrelle, X. Lu and X. Li, *Chemical Engineering Journal*, 2022, **446**, 137107.
- 3 Y. Wen, Y. Liu, T. Wang, Z. Wang, Y. Zhang, X. Wu, X. Chen, S. Peng and D. He, ACS Applied Energy Materials, 2021, 4, 6531-6541.

- 4 T. Peng, Z. Qian, J. Wang, D. Song, J. Liu, Q. Liu and P. Wang, *Journal of Materials Chemistry* A, 2014, **2**, 19376-19382.
- 5 Y. Wen, Y. Liu, S. Dang, S. Tian, H. Li, Z. Wang, D. He, Z.S. Wu, G. Cao and S. Peng, *Journal of Power Sources*, 2019, **423**, 106-114.
- 6 Y. Tang, X. Liu, Y. Chen, L. Han, D. Dai, L. Liu, C. Wang, Y. Hua, X. Zhao and X. Liu, *Journal of Energy Storage*, 2022, **51**, 104518.
- 7 J. Ye, Q. Li, X. Ma, H. Chen, T. Yuan, X. Xu and F. Wang, *Applied Surface Science*, 2021, **554**, 149598.
- 8 F. Ren, Y. Ji, S. Tan and F. Chen, Inorganic Chemistry Frontiers, 2021, 8, 72-78.
- 9 H. Chen, J. Jiang, L. Zhang, D. Xia, Y. Zhao, D. Guo, T. Qi and H. Wan, *Journal of Power Sources*, 2014, **254**, 249-257.