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S1 Methodological Details
Similarly to our previous study on the [Fe(terpy)2]2+ complex1 (terpy = 2,2’:6’,2”-
terpyridine), the methodology utilised in this work is based on full-dimensional trajec-
tory surface hopping (TSH). We carried out the TSH simulations both on linear vibronic
coupling2–4 (LVC) and on-the-fly potential energy surfaces.

The LVC potential, which is based on the harmonic oscillator approximation and
normal modes, is calculated as:

V (αα) = ε(α) +
∑
i

κ
(α)
i qi +

1

2

∑
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h̄ωiq
2
i (1)

V (αβ) =
∑
i

λ
(αβ)
i qi + s(αβ) , (2)

Equation 1 defines the diagonal terms; here ε(α) is the vertical excitation energy
at the FC geometry for electronic state α, qi the normal mode coordinate for mode i,
κ
(α)
i the linear diagonal coupling constants, ωi the ground-state vibrational frequencies,

and h̄ the reduced Planck constant. Equation 2 defines the off-diagonal part with λ
(αβ)
i

being the vibronic coupling constants, and s(αβ) the SOC matrix elements. While the
λ
(αβ)
i coupling constants are calculated by overlaps of electronic wave functions, and the

resulting vibronic term is linearly dependent on the given normal mode coordinate qi, the
s(αβ) SOCs are obtained directly by quantum chemistry at the ground-state equilibrium
geometry, and are taken to independent on the nuclear geometry. The inclusion of SOC
into the LVC model leads to the construction of the spin-vibronic5 Hamiltonian matrix
defined in Equations 1 and 2.

The parameters of our model are given in Section S2, Table S1 and in the provided
supplementary data files.

The quantum chemistry calculations were performed at the density functional the-
ory (DFT)/time-dependent (TD-DFT) level of theory based on the B3LYP*6 exchange-
correlation functional and the TZVP basis set. The B3LYP* functional was chosen for its
known accuracy for the excited-state energetics of Fe complexes1,7–9 Two-electrons inte-
grals were approximated using the resolution-of-identity RI-J10 and RIJCOSX11 methods.
In all TD-DFT calculations, we utilised the Tamm-Dancoff approximation (TDA).12 The
SOC matrix elements were calculated using an approach based on second-quantised spin
operators and SOC integrals written in a spherical basis.13 In these SOC calculations
we applied a mean-field/effective potential SOC operator.14 We did not include solva-
tion in the calculations, as it was found for the studied [Fe(bmip)2]2+ complex (bmip =
2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine) by the C-PCM method15 that solvation
(using acetonitrile as solvent) does not have any significant effect on the excited-state
energetics.16 All DFT/TD-DFT calculations were carried out using the ORCA5.0 imple-
mentations.17,18

Our TSH methodology is based on Tully’s fewest switches19 a three-step propagator
technique,20 and local diabatisation.21,22 The TSH simulations were carried out in the

2



diagonal basis, which is obtained by the diagonalisation of the molecular Coulombic
Hamiltonian (MCH) of quantum chemistry, in which the SOCs appear as off-diagonal
elements. The ground state ensemble is constructed as a Wigner distribution, leading to
initial geometries and velocities. These initial conditions were then filtered for excitation
from the ground state to the singlet excited states using a stochastic algorithm taking
into account the oscillator strengths and excitation energies; for the latter, we used the
2.506−2.606 eV (485 nm excitation) and 3.050−3.150 eV (400 nm excitation) energy
windows to select the initial state. 267/279 trajectories (for 485/400 nm excitation) were
propagated for 4 ps, for the LVC case, and 100 trajectories for 200 fs, for the full on-the-
fly case. In all TSH simulations, we used nuclear and electronic time steps of 0.5 fs and
0.005 fs, recpectively. We utilised the energy-based decoherence correction method23,24

of Granucci et al. with a decoherence parameter of 0.1 a.u. The full on-the-fly TSH
simulations were carried out for the 485 nm excitation case. All TSH simulations were
performed using the SHARC2.1 implementation.25–27

The TSH simulations lead to electronic populations corresponding to the diagonal and
adiabatic (spin-diabatic = MCH) representations, the latter being the standard basis of
quantum chemistry. However, the electronic character in these bases varies as function
of the nuclear geometry, which is undesirable for following electronic relaxation. We thus
transformed the populations to the diabatic basis according to ref. 28:

P
(α)
diab(t) = [U †(t)Pad(t)U(t)]αα , (3)

where Pad and Pdiab are the adiabatic (spin-diabatic) and diabatic population ma-
trices, respectively, and U is the transformation matrix that diagonalises the diabatic
potential matrix to yield the adiabatic one:

Vad = U †VdiabU , (4)

with the diabatic potential matrix Vdiab = V defined by Equations 1 and 2. This
diabatisation procedure leads to the populations shown in Figs. 3 and 4 of the main
article, with the populations corresponding to the same spin multiplicity and electronic
character summed up (1MLCT, 1MC, 3MLCT, 3MC). We note that the Franck-Condon
(FC) reference states can clearly be classified as MLCT or MC, based on the dominant
electronic character.

The normal mode activity displayed in Fig. 5 of the main article was calculated as
the standard deviation of nuclear displacements according to:

σi =

√√√√√ 1

NtrajNstep

Ntraj∑
j=1

Nstep∑
k=1

q2i,j(k∆t)−

 1

NtrajNstep

Ntraj∑
j=1

Nstep∑
k=1

qi,j(k∆t)

2

, (5)

where qi,j are the dimensionless mass-frequency scaled normal mode coordinates, and
j, k run over all trajectories and time steps, respectively.

In Fig. S1, we present the mode activity resulting from the simulation with 485 nm
excitation.
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Fig. S1: Normal mode activity of the [Fe(bmip)2]2+ complex excited at 485 nm; in parantheses,

the frequency of dominant modes are given (in cm−1). All dominant modes possess major Fe-N

or Fe-C stretching character; ν55 and ν91 are deformation modes of the middle pyridine ring.
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S2 Model Parameters
The ground-state normal mode frequencies are given in the data file
"normal_modes_freq.dat", both in eV and cm−1. The frequency of the Fe-N breath-
ing normal mode ν14 (where the indexing corresponds to increasing frequency, i.e., ν1 is
the lowest-frequency mode), which is used in Fig. 2 of the main article, is 110.61 cm−1

(0.014 eV). Animations of the normal modes discussed in the main article are given in an-
imated gif format. The Franck-Condon (FC) geometry is given in Cartesian coordinates
(Å) in the data file "FC.xyz".

Our model includes the singlet ground state (1GS), plus 14 singlet and 18 triplet
excited states; these numbers were chosen by including all excited states that are below
3.1+0.5 = 3.6 eV (3.1 eV = 400 nm, corresponding to the higher-energy excitation) at the
FC geometry. The ε(α) energies, as well as the state characters and oscillator strengths
(for singlet excited states) of the DFT/TD-DFT electronic states (calculated at the FC
geometry) are presented in Table S1. The ε(α) (eV) values are also provided in the data
file "epsilon.dat".

The linear coefficients κ
(α)
i and λ

(αβ)
i are given in the data files "kappa.dat" and

"lambda.dat", respectively (both in eV). The SOC matrix is given in the data file
"SOC.dat" (in cm−1) with state ordering as defined in Table S1; for the triplet spin
components, we use the following ordering: T1 (mS = −1), T2 (mS = −1), ..., T18

(mS = −1), T1 (mS = −0), T2 (mS = −0), ..., T18 (mS = 0), T1 (mS = +1), T2

(mS = +1), ..., T18 (mS = +1).
We note that the ε(α) energies given in Table S1 differ somewhat from those reported

in our previous quantum dynamics (QD) study29 on [Fe(bmip)2]2+. This is because we
used Gaussian09 in ref. 29 for the ground-state optimization, while in this work, it was
ORCA5.0 (which was used for all electronic structure calculations in the present work). In
order to verify that our QD results are not affected by this difference in the energetics, we
repeated the QD simulations with shifting the 3MC states by +0.1 eV (which is the main
difference between the "old"29 and "new" energies given in Table S1, that could affect
the 3MLCT-3MC dynamics), as well as using the energies given in Table S1 (noe that
all other parameters of the Hamiltonian were unchanged). In Figure S2, we compare the
obtained population dynamics to our original QD results. As is clear from the figure, the
differences in the energetics do not have any significant effect on the simulated population
dynamics.

The QD simulations were carried out using the Heidelberg multiconfiguration time-
dependent Hartree (MCTDH) QD software30 utilising the Hamiltonian reported in ref.
29. 15 single particle functions (SPFs) were used for all 1MLCT, 3MLCT, and 3MC states;
for the ground state and 1MC states, we used 2 SPFs (as these states do not play a role
in the dynamics simulated at this level of theory). The QD simulations were initiated
from a single component of the pair of lowest-lying 1MLCT states that are degenerate at
the FC geometry; this technique avoids artificial interference of relaxation pathways.31
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Fig. S2: Effect of the utilised ε(α) energies on the simulated population dynamics of

[Fe(bmip)2]2+, as obtained from 4D QD simulations. Full lines − original energies from ref.

29, dashed lines − same, but all 3MC states shifted by +0.1 eV, dotted lines − energies from

Table S1, this work.

S3 Supplementary Results
We analysed the diabatic populations for a representative set of 90 trajectories (400 nm
excitation case). The purpose of this investigation was twofold: i) to check whether the
3MC states could also be populated directly from the 1MLCTs (in addition to the 1MLCT
→ 3MLCT → 3MC pathway), and ii) to inspect the mechanisms according to which the
ground state is populated. Out of the 90 analysed trajectories, only one is indicative of
a direct 1MLCT → 3MC pathway; this single case is illustrated in Fig. S3, which shows
the diabatic populations of the trajectory. As this direct transition occurs very rarely
(∼1%) it is negligible.

The dominant pathway for populating the 3MC states is 1MLCT → 3MLCT → 3MC;
an example for this mechanism is shown in Fig. S4. As can be seen in this figure, the
ground state is populated from the 3MC, which turned out to be the dominant mechanism
(∼90%)for populating 1GS. The analysis of trajectories revealed that, as shown in Fig.
S5, the ground state can also be populated from 3MLCT states, however, this pathway
only appears as a minor component due its low occurrence (∼10%)

Finally, in Fig. S6, we present the oscillations in the Fe-N/Fe-C bond lengths and
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Fig. S3: The single case of a trajectory for the direct 1MLCT → 3MC pathway.

Fig. S4: Example trajectory for the 1MLCT → 3MLCT → 3MC → 1GS pathway.

along the breathing mode ν14 for the 485 nm excitation case. These results are very
similar to those obtained for the 400 nm excitation case, shown in Fig. 8 in the main
article.
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Fig. S5: Example trajectory for the 3MLCT → 1GS pathway.

Fig. S6: Average trajectories of [Fe(bmip)2]2+ along the Fe-N and Fe-C bond, as well as the

breathing normal mode ν14, as obtained from the simulation with 400 nm excitation.
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Table S1: ε(α) energies, electronic character, and oscillator strengths for excitation from the

ground state of the DFT/TD-DFT electronic states calculated at the B3LYP*/TZVP level at

the FC geometry.

State (character) ε(α) (eV) Osc. strength

S0 (1GS) 0.000 −

S1 (1MLCT) 2.622 0.002

S2 (1MLCT) 2.622 0.002

S3 (1MLCT) 2.853 0.000

S4 (1MLCT) 2.857 0.000

S5 (1MC) 2.891 0.000

S6 (1MC) 2.891 0.000

S7 (1MLCT) 3.009 0.000

S8 (1MLCT) 3.110 0.026

S9 (1MLCT) 3.250 0.010

S10 (1MLCT) 3.250 0.010

S11 (1MC) 3.338 0.000

S12 (1MLCT) 3.343 0.258

S13 (1MLCT) 3.468 0.005

S14 (1MLCT) 3.468 0.005

T1 (3MC) 2.206 0.000

T2 (3MC) 2.206 0.000

T3 (3MC) 2.329 0.000

T4 (3MLCT) 2.495 0.000

T5 (3MLCT) 2.508 0.000

T6 (3MLCT) 2.508 0.000

T7 (3MLCT) 2.594 0.000

T8 (3MLCT) 2.718 0.000

T9 (3MLCT) 2.747 0.000

T10 (3MC) 2.797 0.000

T11 (3MLCT) 2.861 0.000

T12 (3MC) 3.004 0.000

T13 (3MC) 3.004 0.000

T14 (3MLCT) 3.061 0.000

T15 (3MLCT) 3.078 0.000

T16 (3MLCT) 3.078 0.000

T17 (3MLCT) 3.395 0.000

T18 (3MLCT) 3.395 0.000
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