Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting information

Integration of phase change materials with multi-responsive halloysite nanotubes

for efficient Pickering emulsification of high-viscosity oil

Limei Dong ^{*a*, *b*}, Dan Zhang ^{*a*, *b*}, Junfeng Li ^{*a*, *b*}, Shichong Guo ^{*a*, *b*}, Ying Xue ^{*a*, *b*}, Zhining Wang ^{*c*}, and

Yiming Li^{*a*, *b*, *}

^a Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine

Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao,

P.R. China

^b College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P.R.

China

^c Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P.R. China

^{*} Corresponding author. Tel: 86 532 66782509. E-mail: liym@ouc.edu.cn (Y. M. Li)

Summary of Content

Fig. S1. (a) N_2 adsorption-desorption isotherms and (b) pore size distributions of	S3
Fe ₃ O ₄ /PDA/HNTs and 40% PEG@ Fe ₃ O ₄ /PDA/HNTs.	
Fig. S2. (a) FTIR spectra and (b) XRD patterns of PEG@Fe ₃ O ₄ /PDA/HNTs with different	S4
PEG contents.	
Fig. S3. Tangential method for determining the starting and terminating points of the phase	
change of 40% PEG@Fe ₃ O ₄ /PDA/HNTs at irradiation intensity of (a) 100 mW/cm ² , (b)	S5
150 mW/cm^2 and (c) 200 mW/cm^2 .	
Fig. S4. The magnetic-thermal conversion cycling property of (a) 30%	
$PEG@Fe_{3}O_{4}/PDA/HNTs, (b) \qquad 35\% \qquad PEG@Fe_{3}O_{4}/PDA/HNTs, (c) \qquad 45\%$	S6
PEG@Fe ₃ O ₄ /PDA/HNTs and (d) 50% PEG@Fe ₃ O ₄ /PDA/HNTs.	
Fig. S5. The curves of temperature change with time after the pre-heated Fe_3O_4 /PDA/HNTs	
and 40% PEG@Fe ₃ O ₄ /PDA/HNTs spread on the surface of the oil at (a)10 °C, (b) 15 °C	S7
and (c) 25 °C.	
Fig. S6. The IR photographs after the pre-heated (a, b, c) Fe ₃ O ₄ /PDA/HNTs and (a', b', c')	
40% PEG@Fe ₃ O ₄ /PDA/HNTs spread on the surface of the oil at 10 °C, 15 °C and 25 °C,	S8
respectively.	
Fig. S7. Viscosity changes of high-viscosity oil droplets after in contact with (a)	60
Fe ₃ O ₄ /PDA/HNTs and (b) 40% PEG@Fe ₃ O ₄ /PDA/HNTs under the light irradiation.	59
Fig. S8. Viscosity changes process of high-viscosity oil droplets in contact with (a)	
Fe ₃ O ₄ /PDA/HNTs and (b) 40% PEG@Fe ₃ O ₄ /PDA/HNTs under an alternating magnetic	S10
field.	
Fig. S9. The comparison of viscosity-temperature curves before and after magnetization.	S11
Fig. S10. Optical microscopy images of emulsions without emulsifier at the oil to water	G1 4
volume ratio of (a) 1:4, (b) 1:6, (c) 1:9, (d) 1:12.	812
Table S1 Thermal properties of pure PEG and PEG@Fe ₃ O ₄ /PDA/HNTs composites.	S13
Table S2 Thermal properties of 40% PEG@Fe ₃ O ₄ /PDA/HNTs composites before and after	G13
cycling.	813
Table S3 Comparisons of thermal conductivities between this research and reported results.	S13
Table S4 Comparisons of photothermal conversion performance between this research and	S1 <i>4</i>
reported results.	514
Table S5 Comparisons of magnetic-thermal conversion performance and magnetic-thermal	S14

conversion performance between this research and reported results.

Fig. S1. (a) N_2 adsorption-desorption isotherms and (b) pore size distributions of Fe₃O₄/PDA/HNTs and 40% PEG@ Fe₃O₄/PDA/HNTs.

Fig. S2. (a) FTIR spectra and (b) XRD patterns of PEG@Fe₃O₄/PDA/HNTs with different PEG contents.

Fig. S3. Tangential method for determining the starting and terminating points of the phase change of 40% PEG@Fe₃O₄/PDA/HNTs at irradiation intensity of (a) 100 mW/cm², (b) 150 mW/cm² and (c) 200 mW/cm².

Fig. S4. The magnetic-thermal conversion cycling property of (a) 30% PEG@Fe₃O₄/PDA/HNTs, (b) 35% PEG@Fe₃O₄/PDA/HNTs, (c) 45% PEG@Fe₃O₄/PDA/HNTs and (d) 50% PEG@Fe₃O₄/PDA/HNTs.

Fig. S5. The curves of temperature change with time after $Fe_3O_4/PDA/HNTs$ and 40% $PEG@Fe_3O_4/PDA/HNTs$ spread on the surface of the oil at (a)10 °C, (b) 15 °C and (c) 25 °C.

Fig. S6. The IR photographs after pre-heated (a, b, c) $Fe_3O_4/PDA/HNTs$ and (a', b', c') 40% $PEG@Fe_3O_4/PDA/HNTs$ spread on the surface of the oil at 10 °C, 15 °C and 25 °C, respectively.

Fig. S7. Viscosity changes of high-viscosity oil droplets after in contact with (a) Fe₃O₄/PDA/HNTs and (b) 40% PEG@Fe₃O₄/PDA/HNTs under the light irradiation.

Fig. S8. Viscosity changes process of high-viscosity oil droplets in contact with (a) $Fe_3O_4/PDA/HNTs$ and (b) 40% PEG@Fe_3O_4/PDA/HNTs under an alternating magnetic field.

Fig. S9. The comparison of viscosity-temperature curves before and after magnetization.

Fig. S10. Optical microscopy images of emulsions without emulsifier at the oil to water volume ratio of (a) 1:4, (b) 1:6, (c) 1:9, (d) 1:12.

Generalize	Melting process		Solidifying process	
Samples	$\Delta H_{\rm m} \left({\rm J/g} \right)$	T_m (°C)	$\Delta H_{\rm c} ({\rm J/g})$	T_{c} (°C)
Pure PEG	180.61	59.17	167.21	48.41
30% PEG@Fe ₃ O ₄ /PDA/HNT	51.28	55.66	43.08	41.76
35% PEG@Fe ₃ O ₄ /PDA/HNT	59.34	54.86	49.13	42.70
40% PEG@Fe ₃ O ₄ /PDA/HNT	68.24	55.93	57.84	41.54
45% PEG@Fe ₃ O ₄ /PDA/HNT	78.18	56.33	67.14	43.00
50% PEG@Fe ₃ O ₄ /PDA/HNT	88.57	57.21	77.77	44.31

 $\label{eq:Table S2} Thermal properties of 40\% \ PEG @Fe_{3}O_{4}/PDA/HNTs \ composites \ before \ and \ after \ cycling.$

Samples	Melting process		Solidifying process	
	$\Delta H_{\rm m} ({\rm J/g})$	T_m (°C)	$\Delta H_{\rm c} ({ m J/g})$	T_{c} (°C)
Before cycles	68.24	55.93	57.84	41.54
50 cycles	69.89	56.46	56.72	41.98
100 cycles	70.44	56.36	59.02	44.30

Table S3 Comparisons of thermal conductivities between this research and reported results.

DCMa	Support	Thermal conductivity Thermal conductivity		Defe	
PCIVIS		$W/(m \cdot K)$	enhancement (%)	ICCIS.	
PEG 6000	Cu/SiO ₂	0.41	38.1	1	
PEG 6000	SiO ₂ -PDA/Ag	0.50	70.4	2	
PEG 6000	SiO ₂ -Al ₂ O ₃	0.42	41.1	3	
PEG 6000	Fe ₃ O ₄ -GO	0.38	52.0	4	
PEG 6000	Fe ₃ O ₄ /PDA/HNT	0.78	130.0	This work	
	S	0.70	150.0		

Course 1 or	Irradiation intensity	Temperature Photothermal convers		DC
Samples	(mW/cm ²)	(°C)	efficiency (%)	Reis.
Pn@ND/MF microPCMs ^a	-	73.0	64.7	5
ODE microcapsules ^b	500.0	39.4	42.8	6
HPC-PW °	200.0	70.0	31.0	7
FCA ^d	200.0	47.0	60.6	8
PEG@MCHS ^e	150.0	80.9	58.0	9
PEG@Fe ₃ O ₄ /PDA/HNTs	100.0	80.9	69.2	This work

 Table S4 Comparisons of photothermal conversion performance between this research and reported results.

^a Pn@ND/MF microPCMs: paraffin@nanodiamond/melamine formaldehyde microencapsulated phase-change materials; ^b ODE microcapsules: n-Octadecane with titanium dioxide nanoparticle-doped styrene-divinylbenzene copolymer; ^c HPC: hierarchical porous carbon; ^d FCA: Fe-doped carbon aerogel; ^c MCHS: mesoporous carbon hollow spheres.

Table S5 Comparisons of magnetic-thermal conversion performance and magnetic-thermal conversion

 performance between this research and reported results.

Samples	Irradiation intensity	Temperature	Input alternating	Temperature	Defr	
	(mW/cm^2)	(°C)	current (A)	(°C)	Kels.	
LA/CKF@Fe ₃ O ₄ ^a	100.0	60.0	-	50.0	10	
MXene@PDA@PPEE ^b	-	87.0	12.4	75.0	11	
MXene@Fe ₃ O ₄ -MA-PU ^c	150.0	75.0	10.0	70.0	12	
FCA	200.0	47.0	12.0	60.0	8	
PEG@Fe ₃ O ₄ /PDA/HNTs	100.0	80.9	8.0	68.5	This work	

^a LA/CKF: lauric acid/carbonized kapok fiber aerogel; ^b PPEE: PEG@PDA@EPDM/EG; ^c MA: myristic acid.

References

- 1 B. Tang, M. Qiu and S. Zhang, Sol. Energy Mater. Sol. Cells, 2012, 105, 242-248.
- 2 J. Li, X. Hu, C. Zhang, W. Luo and X. Jiang, Renew. Energ., 2021, 178, 118-127.
- 3 B. Tang, C. Wu, M. Qiu, X. Zhang and S. Zhang, Mater. Chem. Phys., 2014, 144, 162-167.
- 4 L. Liu, J. Hu, X. Fan, Y. Zhang, S. Zhang and B. Tang, Chem. Eng. J., 2021, 426, 130789.
- 5 L. Xu, Q. Zhao, Y. Li, F. He, Y. Zhou, R. He, J. Fan, K. Zhang and W. Yang, *Ind. Eng. Chem. Res.*, 2020, **59**, 21736–21744.
- 6 K. Zhao, Z. Guo, J. Wang and H. X. Xie, Sol. Energy, 2023, 254, 73-87.
- 7 K. Sun, Y. Kou, Y. Zhang, T. Liu and Q. Shi, ACS Sustainable Chem. Eng., 2020, 8, 3445-3453.
- 8 K. Sun, Y. Kou, H. Dong, S. Ye, D. Zhao, J. Liu and Q. Shi, J. Mater. Chem. A, 2021, 9, 1213-1220.
- 9 L. Dong, Y. Li, J. Li, Y. Guan, X. Chen, D. Zhang and Z. Wang, J. Hazard. Mater., 2023, 451, 131112.
- 10 S. Song, H. Ai, W. Zhu, L. Lv, R. Feng and L. Dong, Composites, Part B, 2021, 226, 109330.
- 11 X. Hu, B. Quan, B. Ai, M. Sheng, S. Liu, X. Huang, H. Wu, L. Xiang and J. Qu, *J. Mater. Chem. A*, 2023, **11**, 16138.
- 12 Y. Gao, Z. Tang, X. Chen, J. Yan, Y. Jiang, J. Xu, Z. Tao, L. Wang, Z. Liu and G. Wang, *Aggregate*, 2022, 4, e248.