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1           
2 Fig. S1. LSV curves of electrodes soaked in different chloride solutions.

3         (CoCl2 is chosen as the solution for soaking process)

4

5 Among various MFe-O NAs/IF samples prepared under similar conditions, CoFe-O 

6 NAs/IF shows the best HER catalytic performance, that is chosen as the nanoarray 

7 precursors for subsequent phosphorization.
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1             

2 Fig. S2. LSV curves of CoFe-O NAs/IF prepared under different conditions. 

3 (Other conditions are the same, optimized concentration is 0.4 M)
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1

2 Fig. S3. LSV curves of CoFe-O NAs/IF prepared under different conditions. 

3 (Other conditions are the same, optimized soaking time is 24 hours)
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1

2 Fig. S4. LSV curves of CoFe-O NAs/IF prepared under different conditions. 

3 (Other conditions are the same, optimized soaking temperature is room temperature)

4

5 According to the curves shown in Figs. S2-S4, the soaking conditions are optimized: 

6 IF is soaked in 0.4 M CoCl2 solution for 24 hours at room temperature.
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1             

2 Fig. S5. LSV curves of CoFe-P NAs/IF prepared under different conditions. 

3 (Other conditions are the same, optimized phosphorization temperature is 350 ℃)
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1             

2 Fig. S6. LSV curves of CoFe-P NAs/IF prepared under different conditions. 

3 (Other conditions are the same, optimized phosphorization time is 60 minutes)
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1

2 Fig. S7. LSV curves of CoFe-P NAs/IF prepared under different conditions.

3  (Other conditions are the same, optimized mass of NaH2PO2 is 0.5 g)
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1

2 Fig. S8. LSV curves of CoFe-P NAs/IF prepared under different conditions. 

3 (Other conditions are the same, optimized thickness of IF is 4 mm)

4

5 According to the curves shown in Figs. S5-S8, the chemical vapor deposition 

6 conditions are optimized: CoFe-O NAs/IF (thickness of IF is 4 mm) is phosphorized at 

7 350 ℃ for 60 minutes, while 0.5 g NaH2PO2 acts as the source of P.
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1

2                             Fig. S9. SEM images of IF.
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1

2                     Fig. S10. SEM images of CoFe-O NAs/IF.
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1              

2 Fig. S11. XPS survey scan of CoFe-P NAs/IF.
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1             
2 Fig. S12. High resolution Co 2p XPS spectrum of CoFe-P NAs/IF.
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1          

2 Fig. S13. Advancing contact angles of (a) IF and (b) CoFe-P NAs/IF.
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1 Estimation of Electrochemical Active Surface Area.

2 The electrochemical double-layer capacitance (Cdl) is calculated to estimate the 

3 electrochemical surface area (ECSA) through cyclic voltammetry (CV) measurement 

4 at different scan rates. By plotting current density differences (Δj = |ja-jc|/2) against the 

5 CV scan rates, the Cdl values can be calculated. The Cdl can be converted to an ECSA 

6 using the specific capacitance value for a flat standard with 1 cm2 of real surface area. 

7 The specific capacitance for a flat surface is generally found to be within the range 

8 of 20-60 µF cm−2.1 In the calculation of turnover frequency, 40 µF cm−2 is used for 

9 calculations. The ECSA can be calculated from the following equation:

10
𝐴𝐸𝐶𝑆𝐴 =

𝐶𝑑𝑙 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 (𝑚𝐹 𝑐𝑚 ‒ 2)

40𝜇𝐹 𝑐𝑚 ‒ 2 𝑝𝑒𝑟 𝑐𝑚 2
𝐸𝐶𝑆𝐴
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1 The turnover frequency (TOF) is calculated from the following equation: 

2
𝑇𝑂𝐹 =

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑠/𝑐𝑚2 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑎𝑟𝑒𝑎

# 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠/𝑐𝑚2 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑎𝑟𝑒𝑎

3 The total number of hydrogen turnovers is obtained from the corresponding current 

4 density of:

5

#𝐻2

= (𝑗
𝑚𝐴

𝑐𝑚2)( 1 𝐶 𝑠 ‒ 1

1000 𝑚𝐴)( 1 𝑚𝑜𝑙 𝑒 ‒

96485.3 𝐶)(1 𝑚𝑜𝑙 𝐻2

2 𝑚𝑜𝑙 𝑒 ‒ )(6.022 × 1023𝐻2 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

1 𝑚𝑜𝑙 𝐻2 ) = 3.12 × 1015 
𝐻2 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑠 ‒ 1

𝑐𝑚2

𝑝𝑒𝑟
𝑚𝐴

𝑐𝑚2

6 As the exact hydrogen binding site is not known, we estimate the number of active sites 

7 as the number of surface sites (including the whole atoms as the postulated active sites) 

8 from the roughness factor together with the unit cell and simulated models in DFT 

9 calculations.

10 The number of surface sites per real surface area:

11
# 𝐼𝐹

𝐴𝑐𝑡𝑖𝑣𝑒 𝑆𝑖𝑡𝑒𝑠 = (
2 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

23.4 Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2
3 = 1.940 × 1015 𝑎𝑡𝑜𝑚𝑠 𝑐𝑚 ‒ 2

𝑟𝑒𝑎𝑙

12

13
# 𝐹𝑒𝑃

𝐴𝑐𝑡𝑖𝑣𝑒 𝑆𝑖𝑡𝑒𝑠 = (
4 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

93.2 Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2
3 = 1.226 × 1015 𝑎𝑡𝑜𝑚𝑠 𝑐𝑚 ‒ 2

𝑟𝑒𝑎𝑙

14

15
# 𝐶𝑜𝐹𝑒 ‒ 𝑃

𝐴𝑐𝑡𝑖𝑣𝑒 𝑆𝑖𝑡𝑒𝑠 = (
205 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

4847.7 Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2
3 = 1.214 × 1015 𝑎𝑡𝑜𝑚𝑠 𝑐𝑚 ‒ 2

𝑟𝑒𝑎𝑙

16 Finally, the plot of current density can be converted to a TOF plot based on the 

17 following equation:
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1
𝑇𝑂𝐹 =

(3.12 × 1015
𝐻2 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑠 ‒ 1

𝑐𝑚2
𝑝𝑒𝑟

𝑚𝐴

𝑐𝑚2
) × |𝑗|

#𝐴𝑐𝑡𝑖𝑣𝑒 𝑆𝑖𝑡𝑒𝑠 × 𝐴𝐸𝐶𝑆𝐴

2
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1 Comparison of HER performances of CoFe-P NAs/IF (this work) with other 

2 electrodes.

3                Table S1. Comparison of different HER electrodes.

Catalysts Overpotential at

10 mA cm-2

Overpotential at

100 mA cm-2

Overpotential at

500 mA cm-2

Overpotential at

1000 mA cm-2

CoFe-P NAs/IF 

(This work)
40 mV 108 mV 151 mV 162 mV

MoS2/Ni3S2 NW-NF2

70 mV 137 mV 182 mV 200 mV

 MoS2/Mo2C-Ti foil3

― ― 191 mV 220 mV

Co-B-P/NF4

42 mV ― ― 165 mV

NiCoP/NF5

55 mV 122 mV 171 mV 193 mV

Co2P−Ni12P5/NF6

37 mV 109 mV 173 mV 219 mV

CoFeOH/CoFeP/IF7

― 114.9 mV 194.9 mV 221.8 mV

P-Fe3O4/IF8

― 138 mV 220 mV 240 mV

F-Co2P/Fe2P/IF9

― 151.8 mV 229.8 mV 260.5 mV

4

5

6

7

8

9
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1         
2 Fig. S14. (a) Measurement of Faradic efficiency of CoFe-P NAs/IF||CoFe-P NAs/IF. 
3 (b) Optical image of Hoffman apparatus setup.10
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1             

2 Fig. S15. LSV curves of CoFe-P NAs/IF before and after stability test.

3

4

5

6

7

8

9

10

11

12

13

14

15



21

1

2 Fig. S16. SEM images of CoFe-P NAs/IF after stability test.
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1
2 Fig. S17. XPS spectra of CoFe-P NAs/IF after stability test. (a) Co 2p.

3 (b) Fe 2p. (c) P 2p.
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1           
2 Fig. S18. EDX spectrum of CoFe-P NAs/IF and atomic fractions of the 

3 constituent elements.

4

5 The atomic ratio of Co:Fe in CoFe-P NAs/IF is approximately 1.4:1, which is consistent 

6 with the values in Fig. S11 basically. Some differences arise from the distinction of 

7 investigation depth between XPS and EDX. The investigation depth of XPS is about 

8 2-4 nm, while that of EDX is around 1-3 μm, so it is understandable that the data 

9 obtained from these two methods exists some differences.
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