Electronic Supplementary Information (ESI)

A flame-retardant wood-based composite with magnesium-aluminium

layered double hydroxides for efficient daytime radiative cooling

Guowei Li, Jiawei Huang, Jian Zhou, Yucheng Zhang, Chuchu Zhang, Zhenggang Rao *,

Linfeng Fei *

School of Physics and Materials Science, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, China

* Corresponding authors.

E-mail addresses: feilinfeng@gmail.com (L. Fei); raozhenggang@ncu.edu.cn (Z. Rao)

Figure S2. SEM image of MgAl-LDH nanoflakes loaded on a lignocellulose fiber.

Figure S3. FTIR transmittance spectra of lignocellulose fibers and the DW-MAL composite. The absorption peaks observed at wavenumbers of 784 cm⁻¹ (-OH) and 1063 cm⁻¹ (CO_3^{2-}) are attributed to MgAl-LDH nanoflakes, while the peaks at 894 cm⁻¹ (C-H), 992 cm⁻¹ (C-O), 1110 cm⁻¹ (C-H), and 1160 cm⁻¹ (C-O-C) are associated with lignocellulose fibers.

Figure S4. Frontview and sideview SEM images of a lignocellulose laminate.

Figure S5. (a) Compressive stress-strain curves for natural wood, lignocelluloselaminate and the DW-MAL composite. (b) Compressive stress-strain of the DW-MALcompositelaminateswithdifferentMgAl-LDHcontents.

Figure	S6.	Comparison	of	thermal	conduc	tivities	for	natural	wood	laminate,
lignoce	llulos	e laminat	te	and	the	DW-M	۹L	compo	site	laminate.

Figure S7. XRD pattern for the DW-MAL composite. The characteristic peaks marked in purple fonts belong to lignocellulose, while the peaks marked in black fonts belong to MgAl-LDHs.

Figure S8. (a) Reflectance in solar spectrum for the DW-MAL composite after 6 months of storage. (b) Compressive stress-strain curve for the DW-MAL composite laminate after 6 months of storage.

Figure S9. Orange preservations by the DW-MAL composite (the controlled groups were cover by a EPE foam or exposed to open air).

Figure S10. Comparative PDRC performance for natural wood, lignocellulose laminate,and the DW-MAL composite under sunlight. Be noted that this measurement wasperformedinanotherdayasthatofFigure3g.

Figure S11. Comparative time-dependent surface temperature profiles for naturalwood and the DW-MAL composite (tested after the removal of the topmost PE film ascomparedwithFigure3g).

Figure S12. Building energy savings for ten representative cities around the world by

the

using

DW-MAL

composite.

Figure S13. Reflection haze of the DW-MAL composite over visible wavelength.

Figure S14. Absorbance v.s. wavelength profiles for the DW-MAL composite and natural wood.

Figure S15. (a) TGA and (b) DTG profiles for natural wood and the DW-MAL composite. At the end of the thermal decomposition process, the DW-MAL composite retained a higher residual mass compared to natural wood.