Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting information

Synthesis of Cu₁Mg₃Sc₂(OH)₁₂CO₃ layered double hydroxide and its derived

catalyst for hydrogenation of DMCD to CHDM

Authors:

Zhili Chang^{*a*}, Boyong Ye^{*a*}, Zixin Zhong^{*a*}, Songlin Wang^{*b*}, Han Wang^{*b*}, Weichen Du ^{*b*}, Zhaoyin Hou^{*a,b,**}

^{*a*} Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.

^b Zhejiang Hengyi Petrochemical Research Institute Co., Ltd., Hangzhou 311200, China

* Corresponding author Zhaoyin Hou Tel/Fax: 86-571-88273283 Email: <u>zyhou@zju.edu.cn</u> Synthesis of Cu₁/Mg₃Al₂O₆: 6.03 g Cu(NO₃)₂·3H₂O, 19.23 g Mg(NO₃)₂·6H₂O and 18.73 g Al(NO₃)₂·9H₂O were dissolved in 400 mL water, which was designated as solution A; 12.80 g NaOH and 10.60 g Na₂CO₃ were dissolved in 400 mL water and labelled as solution B. Solution A and solution B were added dropwise into a beaker under stirring, and the pH of the combined solution was maintained at 9.5 with an online pH meter. Subsequently, the above mixture was vigorously stirred at room temperature for 3 h. And then, the formed solid was filtered, washed with water until the pH of filtrate was close to 7, and the resulting solid was dried at 80 °C for 12 hours and denoted as Cu₁Mg₃Al₂(OH)₁₂CO₃. After calcination (at 400°C for 4 h), above LDH structured precursor was designated as Cu₁Mg₃Al₂O₇. Before catalytic reaction, Cu₁Mg₃Al₂O₇ was further reduced in H₂ (at 300 °C for 1 h) and the final catalyst was labelled as Cu₁/Mg₃Al₂O₆.

Synthesis of Cu₁/Mg₃Sc₂O₆-IM: Firstly, supporter Mg₃Sc₂O₆ was prepared by the same steps as preparation of Cu₁Mg₃Sc₂O₇. Subsequently, 3.04 g Cu(NO₃)₂·3H₂O was dissolved in 4 ml water and stirred well, and then 4.00 g Mg₃Sc₂O₆ was added to above solution. After ultrasonic treatment for 30 min, the mixture was dried in an oven at 80 °C for 12 h. After calcination (at 400°C for 4 h), above sample was designated as CuO/Mg₃Sc₂O₆-IM. Before catalytic reaction, CuO/Mg₃Sc₂O₆-IM was further reduced in H₂ (at 300 °C for 1 h) and the final catalyst was labelled as Cu₁/Mg₃Sc₂O₆-IM.

Table S1

Sample	$d_{003}(\text{nm})$	$d_{110}(nm)$	$a (nm)^a$	$c(\mathrm{nm})^{b}$
Cu ₁ Mg ₃ Al ₂ (OH) ₁₂ CO ₃	0.7584	0.1528	0.3056	2.2752
$Cu_1Mg_3Sc_2(OH)_{12}CO_3$	0.7691	0.1585	0.3170	2.3073
Mg ₆ Al ₂ (OH) ₁₆ CO ₃	-	-	0.3060	2.3400

The lattice parameters of LDH precursors.

^{*a*} parameter $a = 2d_{110}$.

^{*b*} parameter $c = 3d_{003}$.

Fig. S1. TG-DSC curve of $Cu_1Mg_3Sc_2(OH)_{12}CO_3$.

Theoretical mass loss from Cu₁Mg₃Sc₂(OH)₁₂CO₃ to Cu₁Mg₃Sc₂O₇: $m_{theorical} = (M_{LDH}-M_{LDO}/M_{LDH} \times 100\% = (490.53-338.40)/490.53 \times 100\% = 31.0\%$ Actual mass loss of hydroxyl and carbonate in DG-DSC curves of Cu₁Mg₃Sc₂(OH)₁₂CO₃: $m_{actual} = m_{3rd} / 100\% - m_{1st} - m_{2nd}) \times 100\% = 25.5\% / (100\% - 15.8\%) \times 100\% = 30.3\%$

The above calculations showed that $m_{theorical}$ is in good agreement with m_{actual} .

Fig. S2. SEM images of Cu₁Mg₃Al₂(OH)₁₂CO₃.

(a) $Cu_1Mg_3Al_2O_7$; (b) $Cu_1Mg_3Sc_2O_7$; (c) $CuO/Mg_3Sc_2O_7$ -IM.

Fig. S4. N₂ adsorption-desorption isotherms (A) and pore size distribution patterns (B) of calcined samples.

Fig. S5. HRTEM images of $Cu_1Mg_3Sc_2O_7$.

(a) $Cu_1/Mg_3Al_2O_6$; (b) $Cu_1/Mg_3Sc_2O_6$;(c) $Cu_1/Mg_3Sc_2O_6$ -IM.

Fig. S7. XPS spectra of calcined samples (A)and reduced samples (B). (a) $Cu_1/Mg_3Al_2O_6$; (b) $Cu_1/Mg_3Sc_2O_6$.

Table S2

Number	Catalyst	Temp.	P _{H2}	H ₂ /DMCD	WHSV _{DMCD}	Con. _{DMCD}	Sel. _{CHDM}	STY _{CHDM}	Reference
		(°C)	(MPa)	(mol/mol)	$(\mathbf{g} \cdot \mathbf{g}_{cat}^{-1} \cdot \mathbf{h}^{-1})$	(%)	(%)	$(\mathbf{g} \cdot \mathbf{g}^{-1}_{cat} \cdot \mathbf{h}^{-1})$	
1	Cu ₁ /Mg ₃ Sc ₂ O ₆	250	2.0	120	0.49	99.3	97.0	0.34	This work
2	Cu-ZZ-35	220	8.0	-	0.44	99.4	97.4	0.31	[1]
3	Cu-3	220	6.0	203	0.09	100	99.8	0.06	[2]
4	R-CAZ-10	220	8.0	-	-	98.8	95.8	-	[3]
5	Cu-600	220	8.0	406	0.44	99.8	95.8	0.30	[4]
6	Cu-55	220	6.0	220	3.3	97.3	96.1	2.2	[5]
7	CSNTs-623	220	5.0	260	0.08	100	96.3	0.05	[6]
8	Re ₅ /AC	220	10.0	-	-	99	67	-	[7]

Comparison of various catalysts for the hydrogenation of DMCD

Table S3

Hydrogenation activity of DMCD reaction solution with various concentration.

DMCD	Con.	Selectivity (%)				C.B.
concentrations (wt%)	(%)	MHMCC ^a	CHDM ^b	MCHM ^c	MOMCM ^d	(%) e
13	99.3	1.0	97.0	1.4	0.3	99.7
20	99.4	4.6	94.1	0.9	0.2	99.8
30	99.5	6.3	92.0	1.0	0.4	99.7
40	99.1	7.6	90.7	0.8	0.5	99.6

Reaction conditions: 1.0 g catalyst, 2.0 MPa, 250 °C, WHSV_{DMCD}=0.49 h⁻¹, H₂/DMCD=120 (mol/mol).

^a MHMCC, methyl 4-hydroxymethyl-cyclohexane carboxylate.

^b CHDM, 1, 4-cyclohexane dimethanol.

^c MCHM, 4-methyl-cyclohexane methanol.

^d MOMCM, 4-((Methoxymethyl)cyclohexyl) methanol.

^e Carbon balance, defined as (All carbon atoms detected in liquid products)/ (All carbon atoms in feed) × 100%

Table S3 indicated that the conversion of DMCD was higher than 99% even with a 40wt% concentration of DMCD in feed. But the selectivity of CHDM decreased slightly from 97% to 90.7%, as the selectivity of intermediate (MHMCC) increased.

Fig. S8. Performance of $Cu_1/Mg_3Sc_2O_6$ under varied reaction temperature. Reaction conditions: 1.0 g catalyst, 2.0 MPa, WHSV_{DMCD}=0.49 h⁻¹, H₂/DMCD=120 (mol/mol).

The performance of $Cu_1/Mg_3Sc_2O_6$ catalyst under various reaction temperatures (Fig. S8) indicated that the conversion of DMCD increased quickly from 84.5% (230 °C) to above 99.3% (250 °C) and nearly fully conversion after that. While the selectivity of CHDM increased from 90.4% (230 °C) to 97% (250 °C), and then decreased slightly with the increasing temperature because the deep hydrogenation of CHDM to MCHM.

Fig. S9. Performance of $Cu_1/Mg_3Sc_2O_6$ under varied H_2 Pressure. Reaction conditions: 1.0 g catalyst, 250 °C, WHSV_{DMCD}=0.49 h⁻¹, $H_2/DMCD$ =120 (mol/mol).

The performance of $Cu_1/Mg_3Sc_2O_6$ catalyst under various reaction pressure (Fig. S9) confirmed that it is active even at a very low H₂ pressure (1.0 MPa) and the conversion of DMCD reached 88.5%. The conversion of DMCD increased continuously with the raising pressure, while the selectivity of CHDM changed slightly during the varied reaction pressure.

Fig. S10. The activity of Cu₁/Mg₃Sc₂O₆ under different WHSV_{DMCD}. Reaction conditions: 1.0 g catalyst, 250 °C, 2.0 MPa, H₂/DMCD=120 (mol/mol).

Fig. S10 exhibited the performance of $Cu_1/Mg_3Sc_2O_6$ catalyst for the hydrogenation of DMCD at various WHSV_{DMCD} at (250 °C, 2 MPa). It was found that DMCD has been converted completely when WHSV_{DMCD} was less than 0.49 h⁻¹, but the selectivity of over-hydrogenation product (MCHM) was higher at 0.16 and 0.33 h⁻¹, which depressed the selectivity of CHDM. On the other hand, the conversion of DMCD decreased with the increasing WHSV to 0.82 h⁻¹, and the selectivity of intermediate (MHMCC) increased.

Fig. S11. Stability of Cu₁/Mg₃Sc₂O₆ for the hydrogenation of DMCD. Reaction conditions: 1.0 g catalyst, 250 °C, 2.0 MPa, WHSV_{DMCD} =0.49 h⁻¹, H₂/DMCD=120 (mol/mol).

Fig. S11 exhibited the stability of $Cu_1/Mg_3Sc_2O_6$ for hydrogenation of DMCD under optimized reaction conditions (2.0 MPa, 250 °C, WHSV_{DMCD}=0.49 h⁻¹, H₂/DMCD=120 (mol/mol)), it was confirmed that $Cu_1/Mg_3Sc_2O_6$ can remain its performance for more than 300 h on stream.

Fig. S12. XRD patterns of (a) fresh Cu₁/Mg₃Sc₂O₆; (b) spent Cu₁/Mg₃Sc₂O₆.

Fig. S13. XPS spectra (A) and corresponding AES spectra (B).
(a) fresh Cu₁/Mg₃Sc₂O₆; (b) spent Cu₁/Mg₃Sc₂O₆.

References

- 1 S. Zhang, Q. Hu, G. Fan and F. Li, *Catal. Commun.*, 2013, **39**, 96-101.

- S. Zhang, G. Fan and F. Li, *Green Chem.*, 2013, **15**, 2389-2393.
 Q. Hu, G. Fan, L. Yang and F. Li, *ChemCatChem*, 2014, **6**, 3501-3510.
 Q. Hu, G. Fan, S. Zhang, L. Yang and F. Li, *J. Mol. Catal. A: Chem.*, 2015, **397**, 134-141.
 H. Liu, Q. Hu, G. Fan, L. Yang and F. Li, *Catal. Sci. Technol.*, 2015, **5**, 3960-3969.
- 6 X. Gong, M. Wang, H. Fang, X. Qian, L. Ye, X. Duan and Y. Yuan, *Chem. Commun.*, 2017, **53**, 6933-6936.
- 7 J. Luo, E. Qu, Y. Zhou, Y. Dong and C. Liang, Appl. Catal., A,2020, 602, 117669.