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Materials and Methods

Materials and Characterization
All starting materials and solvents were obtained from commercial suppliers and used without 

further purification. Analytical thin-layer chromatography (TLC) was performed on silica-gel plate 
w/UV254 (200 μm). The 1H NMR spectra were recorded on 400 MHz spectrometer (Bruker 
AVANCE NEO 600 spectrometer) in the indicated solvents. Chemical shifts are expressed in parts 
per million (δ) using residual solvent protons as internal standard. The couple constants values (J) 
are in Hertz (Hz). The following abbreviations were used for signal multiplicities: s, singlet; d, 
doublet. Solid-state diffuse reflectance UV-vis spectra characterized by Lambda 750S. Powder 
XRD patterns were recorded on Rigaku SmartLab SE diffractometer (CuKα, λ = 1.5405 Å, 45 kV, 
200 mA). Scanning electron microscopy (SEM) images were recorded on field emission scanning 
electron microscope (Tescan CLARA). X-ray photoelectron spectroscopy (XPS) was performed in 
ESCALAB 250Xi (The adventitious carbon located at 284.8 eV was used to calibrate samples 
without the carbon themselves). The morphologies of materials were characterized using field 
emission transmission electron microscopy (FE-TEM, F200). ESR spectra were recorded on a 
Bruke A200 spectrophotometer at 298 K. 
Electrochemical measurements

Electrochemical impedance spectroscopy (EIS), transient photocurrent response, and Mott-
Schottky plots were performed on a CHI660E electrochemical workstation (Chenhua Instruments 
Co., Shanghai) with a standard three-electrode system. 0.50 M Na2SO4 water solution was used as 
the electrolyte. Pt film and Ag/AgCl electrode were used as counter electrode and reference 
electrode, respectively. The working electrodes were prepared as follows: the photocatalyst powder 
(2 mg) and 5.0 wt% Nafion solution (5 μL) were dispersed in ethanol (0.2 mL). After sonication for 
30 min, the obtained ink was uniformly pipetted onto a piece of indium tin oxide (ITO) conductive 
glass with a deposition area of 1 × 1 cm2 and dried at 50 °C for 4 hours. The light source used for 
transient photocurrent response measurements was a 300 W Xe lamp.
Computational methods
All the calculations were performed with density functional theory (DFT)1 and time-dependent 
density functional theory (TDDFT)2 implemented in Gaussian 09 program package3. The ground-
state geometry optimizations of ZnTPP and [(ZnTPP)2I]+ molecules were performed at B3LYP/3-
21G level.4,5 The excited energy at B3LYP/3-21G TD level was calculated from the optimized 
ground state structures without further relaxation. The vertical transition energies were obtained by 
the difference between the energies of the lowest excited state and the ground state.
Photocatalytic Reaction

For photocatalytic oxidative coupling of amines, 0.55 mL of CD3CN, 0.1 mmol of substrate, 
and 2 mg of catalysts were added into a 5 mL glass vessel. After ultrasonic treatment of 10 s, the 
mixture was irradiated with a blue LED (50 W, 460 ~ 465 nm). The reaction was monitored by TLC 
and the yield was analyzed by 1H NMR without treatment. The catalysts were separated by 
centrifugation and washed by DCM and MeOH for recycling. 
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Synthesis

Synthesis of 5,10,15,20-tetrakis(4-pyridyl) porphyrin (H2TPP)6

4-Pyridine carboxaldehyde (8.8 mL, 93.4 mmol) was added to propionic acid (700 mL), then 
pyrrole (6.5 mL, 93.4 mmol) was added under stirring. The mixture was refluxed overnight. After 
cooled to room temperature, the solvent was evaporated under reduced pressure, and the resulting 
solid was washed by DMF (2×100 mL) and hot MeOH (2×250 mL). The filtrate was dried under 
vacuum to obtain pure H2TPP (dark purple powder, 4.05 g, 28%). 1H NMR (600 MHz, 298K, 
DMSO-d6, ppm): δ 9.06 (dd, J1 = 5.8 Hz, J2 = 2.5 Hz, 8H); 8.92 (s, 8H), 8.28 (dd, J1 = 5.8 Hz, J2 = 
2.5 Hz, 8H); -3.06 (s, 2H).
Synthesis of 5,10,15,20-tetrakis(4-pyridyl) zinc(II) porphyrin (ZnTPP)6

Pure H2TPP (1.0 g, 1.6 mmol) was dissolved in a mixture of chloroform (20 mL) and methanol 
(5 mL) with zinc acetate (1.2 g, 6.5 mmol). The mixture was refluxed under stirring for 8 h. After 
cooled to room temperature, the solvent was evaporated under reduced pressure, and the resulting 
solid was washed with hot MeOH (2×250 mL) and water (100 mL). The filtrate was dried under 
vacuum to obtain pure ZnTPP (violet powder, 1.1 g, 99%). 1H NMR (600 MHz, 298K, DMSO-d6, 
ppm): δ 9.02 (dd, J1 = 5.8 Hz, J2 = 2.5 Hz, 8H); 8.84 (s, 8H), 8.22 (dd, J1 = 5.8 Hz, J2=2.5 Hz, 8H).
Synthesis of XOF-ZnTPP

AgBF4 (23 mg, 0.11 mmol) in methanol (5 mL) was added dropwise into a solution of ZnTPP 
(40 mg, 0.05 mmol) in CHCl3/MeOH (30 mL, v/v = 1:4) mixed solution. After the solution was 
stirred for 1 hour at room temperature, a methanol solution of iodine (30 mg, 0.11 mmol) was added 
by drops. and the mixture was stirred for another 1 hour at room temperature. Then, the solvent was 
removed by filtrating. The residue solid was dried under vacuum to obtain XOF-ZnTPP (black 
solid, 80 mg, 68%). 1H NMR (600 MHz, 298K, DMSO-d6, ppm): 9.05 (d, J = 5.8 Hz 8H); 8.86 (s, 
8H), 8.27 (d, J = 5.8 Hz 8H). The synthesized material was further annealed in DMSO at 120 °C 
for 2 hours to obtain crystallized XOF-ZnTPP.
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Results and Discussion

Figure S1. XPS spectra of XOF-ZnTPP.

Figure S2. Partial 1H NMR spectra of ZnTPP and XOF-ZnTPP (DMSO-d6, 600 MHz, 298 K).

Figure S3. ATR-FTIR spectra of H2TPP, ZnTPP, and XOF-ZnTPP.
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Figure S4. Solid-state diffuse reflectance UV-vis spectra of ZnTPP and XOF-ZnTPP.

Figure S5. Digital photographs of ZnTPP and XOF-ZnTPP.

Figure S6. The PXRD patterns of XOF-ZnTPP after treatment in different solvents at room 
temperature for 24 hours.
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Figure S7. TGA curve of ZnTPP and XOF-ZnTPP.

Figure S8. N2 sorption isotherms plots of XOF-ZnTPP.
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Figure S9. Comparison of experimental and simulated PXRD patterns of different models.

Figure S10. Side view of different XOF-ZnTPP models.

Figure S11. TEM picture XOF-ZnTPP.
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Figure S12. Tauc plots of ZnTPP and XOF-ZnTPP.

Figure S13. Mott-Schottky plots of XOF-ZnTPP (insert: conduction band and valence band 
potentials of the XOF-ZnTPP).
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Figure S14. The UV-vis absorption of ABDA with (a) XOF-ZnTPP and (b) ZnTPP at 
different irradiation time (blue LED, 50 W).
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Figure S15. The UV-vis absorption of NBT with (a) XOF-ZnTPP and (b) ZnTPP at 
different irradiation time (blue LED, 50 W).

Figure S16. Comparison of the decay rate of NBT with ZnTPP and XOF-ZnTPP under 
different irradiation time.
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Figure S17. EPR detection of O2
•- trapped by TEMP in MeOH

Figure S18. The fluorescence of TAOH (Ex = 310 nm, Em = 420 nm) with (a) XOF-ZnTPP 
and (b) ZnTPP at different irradiation time (blue LED, 50 W). TA can react with •OH to generate 

2-hydroxyterephthalic acid (TAOH), which has specific fluorescence emission at 420nm.
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Figure S19. Comparison of the fluorescence change rate at 420 nm of TAOH with ZnTPP 
and XOF-ZnTPP under different irradiation time.

Figure S20. EPR detection of •OH trapped by DMPO in H2O
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Figure S21. The optimized structures of ZnTPP and [(ZnTPP)2I]+.

Table S1. The excitation energies of the first 9 singlet and triplet excited states for model 
molecules ZnTPP and [(ZnTPP)2I]+.

Figure S22. The energy gap between S1, S2 and its nearest triplet excited state.
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Table S2. Selective photocatalytic aerobic oxidation of benzylamine under different 
conditions (0.10mmol benzylamine, 2mg catalyst, 0.55mL solvent, 50W LED).

NNH2

catalyst solvent yield (%)

ZnTPP-XOF

ZnTPP

AgI

/

CD3CN

CD3CN

CD3CN

CD3CN

98

66

n.d.

n.d.

ZnTPP-XOF CD3OD 92

ZnTPP-XOF CD3CN 94

light

blue

blue

blue

blue

blue

green

ZnTPP-XOF CD3CN n.d.dark

ZnTPP-XOF CD3OD 51green

time

1

ZnTPP-XOF CD3OD 96green 4

ZnTPP-XOF CD3OD 72blue 1

2

1

1

1

1

1

1

Figure S23. 1H NMR spectra of the benzylamine oxidation coupling reaction catalyzed by 
XOF-ZnTPP under different LEDs light in 1 hour (blue: 460-465 nm, green: 520-525 nm, yellow: 

585-590 nm, and red: 620-625 nm, all the LEDs are 50W). 
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Figure S24. Wavelength-dependent benzylamine oxidation coupling reaction yields of XOF-
ZnTPP with the absorption curve.

Figure S25. Quenching experiments of ROS for selective aerobic oxidation of benzylamine 
over XOF-ZnTPP.

Figure S26. (a) PXRD and (b) ATR-FTIR spectra of XOF-ZnTPP before and after 
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photocatalysis, respectively.

Figure S27. TEM of XOF-ZnTPP before and after photocatalysis, respectively.

Figure S28. Assessment of catalytic stability of XOF-ZnTPP.
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1H NMR spectra

Figure S29. 1H NMR spectra of H2TPP (DMSO-d6, 600 MHz, 298 K).

Figure S30. 1H NMR spectra of ZnTPP (DMSO-d6, 600 MHz, 298 K).
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Figure S31. 1H NMR spectra of N-benzylidenebenzylamine (CD3CN, 600 MHz, 298 K).

Figure S32. 1H NMR spectra of N-(2-methylbenzylidene)-2-methylphenylmethylamine 
(CD3CN, 600 MHz, 298 K).
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Figure S33. 1H NMR spectra of N-(3-methylbenzylidene)-3-methylphenylmethylamine (CD3CN, 
600 MHz, 298 K).

 

Figure S34. 1H NMR spectra of N-(4-methylbenzylidene)-4-methylphenylmethylamine (CD3CN, 
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600 MHz, 298 K).

 

Figure S35. 1H NMR spectra of N-(4-methoxybenzylidene)-4-methoxybenzylamine (CDCl3, 600 
MHz, 298 K).
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Figure S36. 1H NMR spectra of N-[4-(trifluoromethyl)benzyl]-1-[4-
(trifluoromethyl)phenyl]methanimine (CDCl3, 600 MHz, 298 K).

 

Figure S37. 1H NMR spectra of N-(4-bromobenzyl)-1-(4-bromophenyl) methanimine (CD3CN, 
600 MHz, 298 K).
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Figure S38. 1H NMR spectra of N-(4-methoxycarbonylbenzyl)-N-(4-methoxycarbonylbenzylidene) 
amine (CD3CN, 600 MHz, 298 K).

 

Figure S39. 1H NMR spectra of (4-(((4-(hydroxymethyl)benzyl)imino)methyl)phenyl)methanol 
(CD3CN, 600 MHz, 298 K).
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Figure S40. 1H NMR spectra of N-(2-thienylmethylidene)-2-thienylmethylamine (CD3CN, 600 
MHz, 298 K).
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