Supporting Information

Nanofluidic Ion Regulation Membranes Based on Two-dimensional Vacancies Resided CdPS₃ Membrane

Meng Zhang,^{‡a} Chenhui Huang,^{‡a} Zhaofeng Zhai,^b Xiaomin Kang,^a Jiang Ju*^c and Xitang Qian*^d

^a College of Mechanical Engineering, University of South China, Hengyang 421001, P. R. China

^b Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110012, P. R. China

^c Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong

Kong, Hong Kong 999077, P. R. China

^d Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China

[‡] There authors contribute equally to this work.

* Corresponding author emails: Xitang Qian xtqian@ust.hk and Jiang Ju_Jiang.Ju@cityu.edu.hk

Figures

Fig. S1. The zeta potential diagram of CdPS₃Li nanosheet dispersion.

Fig. S2. Raman spectra of bulk CdPS₃ and CdPS₃X. The out-of-plane vibrations of the P_2S_6 solid exhibit the opposite motion characteristic of the S_3P -PS₃ unit, as discerned from the strongly polarized A1g mode that appears at 378 cm⁻¹. The Raman spectral peak at 247 cm⁻¹ also confirms the significant mode caused by the symmetric stretching vibration of the P-S bond. However, those peaks appearing at 271 and 562 cm⁻¹ represent in-plane vibrations in response to the S₃P-PS₃ unit, exemplified by the E_g mode ¹.

Fig. S3. Structure characterizations of CdPS₃X membranes, showing well-ordered lamellar structures.

Fig. S4. FTIR spectra of bulk $CdPS_3$ and $CdPS_3X$.

Fig. S5. XRD patterns of bulk $CdPS_3$ and $CdPS_3X$. The theoretical X-ray diffraction spectrum of the bulk $CdPS_3$ is shown as a vertical line in the figure, the star represents the multilevel diffraction peak.

Fig. S6. (a) Contact angles of $CdPS_3X$ membranes towards water. (b) Wettability of $CdPS_3X$ membranes toward water.

Fig. S7. XPS spectra of CdPS₃X membranes. a-f, (a) Li *1s* orbitals in bulk CdPS₃ and CdPS₃Li film. (b) Na *1s* orbitals and Li *1s* orbitals in the CdPS₃Na film. (c) K *2p* orbitals and Li *1s* orbitals in the CdPS₃K film. (d) Mg *1s* orbitals and Li *1s* orbitals in the CdPS₃Mg film. (e) Ca *2p* orbitals and Li *1s* orbitals in the CdPS₃Ca film. (f) Al *2p* orbitals and Li *1s* orbitals in the CdPS₃Al film.

Fig. S8. XPS spectra of vc-CdPS₃ membranes. **a-c**, P 2p (a), Cd 3d (b), and S 2p (c) XPS spectra of CdPS₃X membranes, which show that the valence states of P, Cd and S (+4, +2 and -2, respectively) remain the same in all the membranes.

Fig. S9. (a) Ionic conductivity of CdPS₃Na membrane in NaCl solution. (b) Ionic conductivity of CdPS₃Mg membrane under MgCl₂ solution. (c)Ionic conductivity of CdPS₃Ca membrane under calcium chloride solution. (d)Ionic conductivity of CdPS₃Al membrane under aluminum chloride solution. The gray dashed lines represent the bulk conductivity of the corresponding salt solutions.

Fig. S10. Ionic conductivity in CdPS₃X membranes at various HCl concentrations. The gray dashed lines represent the bulk conductivity of HCl solutions.

Fig. S11. Comparison of conductivity of CdPS₃K membrane at different Vg.

Fig. S12. (a) Plot of ions passing through CdPS₃Na nanochannels as a function of time in 10^{-6} M NaCl at different Vg. (b)Plot of ions passing through CdPS₃Mg nanochannels as a Function of time in 10^{-6} M MgCl₂ at different Vg. (c)Plot of ions passing through CdPS₃Ca nanochannels as a function of time in 10^{-6} M CaCl₂ at different Vg. (d)Plot of ions passing through CdPS₃Al nanochannels as a function of time in 10^{-6} M AlCl₃ at different Vg.

Tables

Material	Electrolyte	Conductivity (mS cm ⁻¹)	Ref.
BN	KCl solution	0.086	2
Ti ₃ C ₂	KCl solution	0.039	3
GO	KCl solution	1	4
Cellulose	KCl solution	2	5
MXene	KCl solution	0.16	6
Elastic Wood	KCl solution	0.5	7
Montmorillonite	KCl solution	0.8	8
SLMO	KCl solution	0.6	9
CdPS ₃ K	KCl solution	10	This work

Table. S1. Comparison of ionic conductivity of different materials under 10⁻⁶M KCl solution (Platform conductivity).

Material	Electrolyte	Conductivity (mS cm ⁻¹)	Ref.
BN	KOH solution	0.037	2
MoS ₂	KOH solution	0.3	10
Graphite-NFC	KOH solution	1	11
MXene	KOH solution	1.2	6
CdPS ₃ K	KOH solution	20	This work

Table. S2. Comparison of ionic conductivity of different materials under 10⁻⁶M KOH solution (Platform conductivity).

Material	Electrolyte	Conductivity (mS cm ⁻¹)	Ref.
BN	HCl solution	0.6	2
MXene	HCl solution	1	6
Montmorillonite	HCl solution	1.4	8
GO	HCl solution	2.5	4
Graphite-NFC	HCl solution	3	11
LGM	HCl solution	4.5	12
Vermiculite	HCl solution	5.6	13
HA-GO	HCl solution	7	14
SLMO	HCl solution	10	9
CdPS ₃ A1	HCl solution	7.5	This work
CdPS ₃ Ca	HCl solution	8	This work
CdPS ₃ Mg	HCl solution	10	This work
CdPS ₃ Na	HCl solution	12	This work
CdPS ₃ K	HCl solution	23	This work

 Table. S3. Comparison of ionic conductivity of different materials under 10⁻⁶M HCl
 solution (Platform conductivity).

Material	Electrolyte	Conductivity (mS cm ⁻¹)	Ref.
BN	NaCl solution	0.07	2
Ti ₃ C ₂	NaCl solution	0.032	3
Graphite-NFC	NaCl solution	1	11
BN-NFC	NaCl solution	0.18	15
SLMO	NaCl solution	0.2	9
CdPS ₃ Na	NaCl solution	9	This work

Table. S4. Comparison of ionic conductivity of different materials under 10⁻⁶ M NaCl solution (Platform conductivity).

Material	Electrolyte	Conductivity (mS cm ⁻¹)	Ref.
BN	CaCl ₂ solution	0.035	2
GO	CaCl ₂ solution	0.6	4
CdPS ₃ Ca	CaCl ₂ solution	1	This work
Ti ₃ C ₂	AlCl ₃ solution	0.067	3
CdPS ₃ A1	AlCl ₃ solution	1	This work
CdPS ₃ Mg	MgCl ₂ solution	6	This work

Table. S5. Comparison of ionic conductivity of different materials in 10⁻⁶ M CaCl₂, MgCl₂, and AlCl₃ solutions (Platform conductivity).

References

- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum, *Advanced Materials*, 2011, 23, 4248-4253.
- S. Qin, D. Liu, G. Wang, D. Portehault, C. J. Garvey, Y. Gogotsi, W. Lei and Y. Chen, *Journal of the American Chemical Society*, 2017, 139, 6314-6320.
- J. Lao, R. Lv, J. Gao, A. Wang, J. Wu and J. Luo, *Acs Nano*, 2018, 12, 12464-12471.
- K. Raidongia and J. Huang, *Journal of the American Chemical Society*, 2012, 134, 16528-16531.
- T. Li, S. X. Li, W. Kong, C. Chen, E. Hitz, C. Jia, J. Dai, X. Zhang, R. Briber, Z. Siwy, M. Reed and L. Hu, *Science Advances*, 2019, 5.

- Y. Wang, H. Zhang, Y. Kang, Y. Zhu, G. P. Simon and H. Wang, Acs Nano, 2019, 13, 11793-11799.
- C. Chen, J. Song, J. Cheng, Z. Pang, W. Gan, G. Chen, Y. Kuang, H. Huang, U. Ray, T. Li and L. Hu, *Acs Nano*, 2020, 14, 16723-16734.
- 8. M.-L. Liu, M. Huang, L.-Y. Tian, L. H. Zhao, B. Ding, D. B. Kong, Q.-H. Yang and J.-J. Shao, *Acs Applied Materials & Interfaces*, 2019, 11, 6665-6665.
- 9. H. Jin, J. Li, Z. Xu, Z. Hu, K. Liu, K. Liu, J. Duan, B. Hu, L. Huang and J. Zhou, Science China-Materials, 2022, 65, 2578-2584.
- J. Park, S. Bhoyate, Y.-H. Kim, Y.-M. Kim, Y. H. Lee, P. Conlin, K. Cho and W. Choi, *Acs Nano*, 2021, 15, 12267-12275.
- Y. Zhou, C. Chen, X. Zhang, D. Liu, L. Xu, J. Dai, S.-C. Liou, Y. Wang, C. Li, H. Xie, Q. Wu, B. Foster, T. Li, R. M. Briber and L. Hu, *Journal of the American Chemical Society*, 2019, 141, 17830-17837.
- K. Luo, T. Huang, Q. Li, J. Lao, J. Gao and Y. Tang, *Rsc Advances*, 2022, 12, 29640-29646.
- Y. Wu, T. Zhou, Y. Wang, Y. Qian, W. Chen, C. Zhu, B. Niu, X.-Y. Kong, Y. Zhao, X. Lin, L. Jiang and L. Wen, *Nano Energy*, 2022, 92.
- T. J. Konch, R. K. Gogoi, A. Gogoi, K. Saha, J. Deka, K. A. Reddy and K. Raidongia, *Materials Chemistry Frontiers*, 2018, 2, 1647-1654.
- L. Yu, T. Gao, R. Mi, J. Huang, W. Kong, D. Liu, Z. Liang, D. Ye and C. Chen, *Nano Research*, 2023, 16, 7609-7617.