Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

for

Electrochemically and Chemically Stable Electrolyte-

Electrode Interfaces for Lithium Iron Phosphate All-Solid-

State Batteries with Sulfide Electrolytes

Tenglong Lu^{1,2}, Sheng Meng^{1,2,3}*, Miao Liu^{1,3,4}*

¹Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
²School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
³Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
⁴Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author: smeng@iphy.ac.cn, mliu@iphy.ac.cn

Figure S1. Crystal structure and Li-ion vacancy migration profiles of Li₃AlF₆.

Figure S2. Crystal structure and Li-ion vacancy migration profiles of CsLiBeF₄.

Figure S3. Crystal structure and Li-ion vacancy migration profiles of Li₄ZrF₈.

Figure S4. Crystal structure and Li-ion vacancy migration profiles of Na₃Li₃Sc₂F₁₂.

Figure S5. Crystal structure and Li-ion vacancy migration profiles of LiMgAlF₆.

Figure S6. Crystal structure and Li-ion vacancy migration profiles of Na₃Li₃Al₂F₇.

Figure S7. Crystal structure and Li-ion vacancy migration profiles of RbLi₂Be₂F₇.

Figure S8. Crystal structure and Li-ion vacancy migration profiles of LiF.

Figure S9. Crystal structure and Li-ion vacancy migration profiles of LiYF₄.

Figure S10. Crystal structure and Li-ion vacancy migration profiles of KLiBeF₄.

Figure S11. Crystal structure of Cs₂LiAl₃F₁₂.

Figure S12. Crystal structure and Li-ion vacancy migration profiles of LiLuF₄.

Figure S13. Crystal structure and Li-ion vacancy migration profiles of Li₂BeF₄.

Figure S14. Crystal structure of LiErF₄.

Figure S15. Crystal structure of RbLiBeF₄.

Figure S16. Crystal structure and Li-ion vacancy migration profiles of Li₄ScF₇.

Figure S17. Crystal structure and Li-ion vacancy migration profiles of LiMgPO₄.

Figure S18. Crystal structure and Li-ion vacancy migration profiles of LiZr₂(PO₄)₃.

Figure S19. Crystal structure and Li-ion vacancy migration profiles of Li₄Be₃P₃BrO₁₂.

Figure S20. Crystal structure and Li-ion vacancy migration profiles of Li₄Be₃P₃ClO₁₂.

Figure S21. Crystal structure and Li-ion vacancy migration profiles of Li₃PO₄.

Figure S22. Crystal structure and Li-ion vacancy migration profiles of Li₃Sc₂(PO₄)₃.

Figure S23. Crystal structure and Li-ion vacancy migration profiles of Li₄Be₃P₃IO₁₂.

Figure S24. Crystal structure and Li-ion vacancy migration profiles of Li₂Al(BO₂)₅.

Figure S25. Crystal structure and Li-ion vacancy migration profiles of Li₂B₄O₇.

Figure S26. Crystal structure and Li-ion vacancy migration profiles of KLiB₄O₇.

Figure S27. Crystal structure and Li-ion vacancy migration profiles of LiSiBO₄.

Figure S28. Crystal structure and Li-ion vacancy migration profiles of Li₃B₅(HO₅)₂.

Figure S29. Crystal structure and Li-ion vacancy migration profiles of RbLiB₄O₇.

Figure S30. Crystal structure and Li-ion vacancy migration profiles of LiSi₂BO₆.

Figure S31. Crystal structure and Li-ion vacancy migration profiles of Li₃B₇O₁₂.

Figure S32. Crystal structure and Li-ion vacancy migration profiles of LiAl(Si₂O₅)₂.

Figure S33. Crystal structure and Li-ion vacancy migration profiles of NaLiZr(Si₂O₅)₃.

Figure S34. Crystal structure and Li-ion vacancy migration profiles of KLi₃Zr₂(Si₂O₅)₆.

Figure S35. Crystal structure and Li-ion vacancy migration profiles of LiAl(SiO₃)₂.

Figure S36. Crystal structure and Li-ion vacancy migration profiles of CsLiCl₂.

Figure S37. Crystal structure and Li-ion vacancy migration profiles of CsLi₂Cl₃.

Figure S38. Crystal structure and Li-ion vacancy migration profiles of LiCl.

Figure S39. Crystal structure and Li-ion vacancy migration profiles of Li₂B₃O₄F₃.

Figure S40. Crystal structure and Li-ion vacancy migration profiles of NaLiMgPO₄F.

Figure S41. Crystal structure and Li-ion vacancy migration profiles of Li₂B₆O₉F₂.

Formula	Redox Onset	Voltage (V)	Reaction	
	reduction	1.76	$Li_4SnS_4 + 2Li \rightarrow 3Li_2S + SnS$	
LSnS	oxidation	2.14	$Li_4SnS_4 \rightarrow 0.333LiS_3 + Li_2SnS_3 + 1.667Li$	
I DSI	reduction	1.71	$Li_7 P_2 S_8 I + 10 Li \rightarrow LiI + 8 Li_2 S + 2P$	
LFSI	oxidation	2.41	$Li_7 P_2 S_8 I \rightarrow P_2 S_7 + SI + 7Li$	
LPSC	reduction	1.71	$Li_6PS_5Cl + 5Li \rightarrow 5Li_2S + LiCl + P$	
	oxidation	2.13	$Li_6PS_5Cl \rightarrow Li_3PS_4 + 0.333LiS_3 + LiCl + 1.667Li$	
L 5 SPSC	reduction	1.71	$Li_{5.5}PS_{4.5}Cl_{1.5} + 5Li \rightarrow 4.5Li_2S + 1.5LiCl + P$	
LJ.51 SC	oxidation	2.13	$Li_{5.5}PS_{4.5}Cl_{1.5} \rightarrow Li_3PS_4 + 0.1667LiS_3 + 1.5LiCl + 0.8333Li$	
LPS	reduction	1.71	$Li_3PS_4 + 5Li \rightarrow 4Li_2S + P$	
	oxidation	2.43	$Li_3PS_4 \to 0.5P_2S_7 + 0.1667LiS_3 + 2.833Li$	
LEDG	reduction	2.35	$Li_7P_3S_{11} + 0.2857Li \rightarrow 0.1429P_4S_9 + 2.429Li_3PS_4$	
LIFS	oxidation	2.38	$Li_7P_3S_{11} \rightarrow P_2S_7 + Li_3PS_4 + 4Li$	
LCDS	reduction	1.71	$Li_{10}Ge(PS_6)_2 + 10Li \rightarrow Li_4GeS_4 + 8Li_2S + 2P$	
LOPS	oxidation	2.24	$Li_{10}Ge(PS_6)_2 \rightarrow 0.1667GeS_{14} + 2Li_3PS_4 + 0.8333GeS_2 + 4L$	
	reduction	1.71	$Li_{3.25}Ge_{0.25}P_{0.75}S_4 + 3.75Li \rightarrow 0.25Li_4GeS_4 + 3Li_2S + 0.75P$	
L3.25GPS	oxidation	2.24	$\begin{split} Li_{3.25}Ge_{0.25}P_{0.75}S_4 &\to 0.04167GeS_{14} + 0.75Li_3PS_4 \\ & +0.2083GeS_2 + Li \end{split}$	
LSIDSC	reduction	1.71	$\begin{split} Li_{9.54}Si_{1.74}P_{1.44}S_{11.7}Cl_{0.3} + 7.2Li \\ \rightarrow 1.74Li_2SiS_3 + 6.48Li_2S + 0.3LiCl + 1.44P \end{split}$	
LSIPSC	oxidation	2.13	$\overline{Li_{9.54}Si_{1.74}P_{1.44}S_{11.7}Cl_{0.3}}$ $\rightarrow 1.44Li_3PS_4 + 1.74Li_2SiS_3 + 0.3LiCl + 0.24LiS_3 + 1.2Li$	
I O CDS	reduction	1.71	$Li_{9.6}P_3S_{12} + 14.4Li \to 12Li_2S + 3P$	
L9.6PS	oxidation	1.71	$Li_{9.6}P_3S_{12} \rightarrow 3Li_3PS_4 + 0.6Li$	

Table S1. Detailed voltages and reactions for redox onsets of various sulfide electrolytes.

Formula	Flectrode	Products	ΔΕ	
Formula	Electrone	Troducts	(meV/atom)	
	LiFePO4	SnS, FeS, FeS2, Li3PO4	-159	
LSnS	FePO4	SnS, SnS2, FeS2, Li3PO4	-255	
I DCI	LiFePO4	Li4P2O7, FePS, FeS2, LiI	-136	
LFSI	FePO4	PI7, Li4P2O7, FePS, LiPO3, FeS2	-220	
LDCC	LiFePO4	Li3PO4, FePS, Li4P2O7, FeS2, LiCl	-152	
LPSC	FePO4	LiPO3, FePS, Li4P2O7, FeS2, LiCl	-238	
	LiFePO4	Li3PO4, FePS, Li4P2O7, FeS2, LiCl	-152	
L3.3PSC	FePO4	LiPO3, FePS, Li4P2O7, FeS2, LiCl	-216	
LDC	LiFePO4	FePS, Li4P2O7, FeS2	-141	
LPS	FePO4	FePS, Li4P2O7, LiPO3, FeS2	-226	
L 7DC	LiFePO4	FePS, Li4P2O7, LiPO3, FeS2	-138	
L/PS	FePO4	P4S7, FePS, LiPO3, FeS2	-218	
LODG	LiFePO4	Li4P2O7, FePS, Li3PO4, GeS2, FeS2	-147	
LGPS	FePO4	Li4P2O7, FePS, LiPO3, GeS2, FeS2	-233	
1225005	LiFePO4	Li4P2O7, FePS, Li3PO4, GeS2, FeS2	-145	
L3.23GPS	FePO4	Li4P2O7, FePS, LiPO3, GeS2, FeS2	-231	
	L :E-DO4	Li4P2O7, FeS2, FePS, LiCl, Li3PO4,	171	
LSiPSC	LIFeP04	SiO2	-171	
	FePO4	Li4P2O7, FeS2, FePS, LiCl, LiPO3, SiO2	-266	
LO (DC	LiFePO4	FePS, Li4P2O7, Li3PO4, FeS2	-146	
L9.0P5	FePO4	FePS, Li4P2O7, LiPO3, FeS2	-232	

Table S2. Detailed chemical reaction between sulfide electrolytes and LiFePO₄/FePO4.

Formula	Voltage (V)	Electrode	Products	ΔE (meV/atom)
	2		SnS, FeS, FeS2, Li3PO4	-222
	2.5	-	Li, SnS2, SnS14, FeS2, Li3PO4	-271
LSnS	3	LiFePO4	Li, SnS14, SnS2	-633
	3.5	-	Li, SnS14, SnS2	-1033
	4	-	Li, SnS14, SnS2	-1433
	2		FeS2, FeS, FeP, Li3PO4, LiI	-227
	2.5		Li, P4S7, Li4P2O7, FePS, PI7, FeS2	-178
LPSI	3	LiFePO4	Li, P2S7, SI	-375
	3.5		Li, P2S7, SI	-693
	4		Li, P2S7, SI	-1011
	2		FeS2, FeS, FeP, Li3PO4, LiCl	-231
	2.5		Li4P2O7, P2S5, FeS2, LiCl	-218
LPSC	3	LiFePO4	Li, P2S7, LiCl, LiS4	-446
	3.5		Li, SCl, P2S7, S	-815
	4		Li, SCl, P2S7, S	-1243
	2		FeS2, FeS, FeP, Li3PO4, LiCl	-225
	2.5	LiFePO4	Li, P4S7, Li4P2O7, FePS, FeS2, LiCl	-190
L5.5PSC	3		Li, P2S7, LiCl, LiS4	-340
	3.5		Li, PCl5, SCl, P2S7	-647
	4		Li, PCl5, SCl, P2S7	-1039
	2		FeP, FeS2, FeS, Li3PO4	-230
	2.5		Li, P4S7, Li4P2O7, FePS, FeS2	-181
LPS	3	LiFePO4	Li, P2S7, LiS4	-328
	3.5		Li, P2S7, S	-624
	4		Li, P2S7, S	-924
	2		FeP, FeS2, FeS, Li3PO4	-235
	2.5		P4S7, Li4P2O7, FePS, FeS2	-176
L7PS	3	LiFePO4	Li, P2S7, LiS4	-295
	3.5		Li, P2S7, S	-543
	4		Li, P2S7, S	-793
	2		FeS2, FeS, GeS, FeP, Li3PO4	-224
	2.5		Li4P2O7, FeS2, GeS2, FePS	-198
LGPS	3	LiFePO4	Li, P2S7, GeS2, GeS14	-440
	3.5		Li, GeS14, P2S7, GeS2	-773
	4		Li, GeS14, P2S7, GeS2	-1107
	2		FeS2, FeS, GeS, FeP, Li3PO4	-225
L2 25CDC	2.5	LiE-DO4	Li4P2O7, FeS2, GeS2, FePS	-193
L3.230PS	3	LIFEP04	Li, P2S7, GeS2, GeS14	-419
	3.5	1	Li, GeS14, P2S7, GeS2	-744

 $Table \ S3. \ Detailed \ chemical \ reaction \ between \ sulfide \ electrolytes \ and \ LiFePO_4 \ under \ voltages.$

	4		Li, GeS14, P2S7, GeS2	-1069
	2		FeS2, FeS, FeP, Li3PO4, SiO2, LiCl	-238
	2.5		Li, Li4P2O7, P2S5, P2S7, FeS2, SiO2, LiCl	-237
LSiPSC	3	LiFePO4	Li, P2S7, SiS14, FeS2, SiCl4, SiS2, SiO2	-461
	3.5		Li, SiS14, P2S7, SiS2, SiCl4	-732
	4		Li, SiS14, P2S7, SiS2, SiCl4	-1047
	2		FeP, FeS2, FeS, Li3PO4	-232
	2.5		Li, P4S7, Li4P2O7, FeS2, FePS	-189
	3		Li, P2S7, LiS4	-380
L9.6PS	3.5	LiFePO4	Li, P2S7, S	-695
	4		Li, P2S7, S	-1015

Fermula	Formerla Electro de Due due te		ΔE
Formula	Electrode	Products	(meV/atom)
	LiFePO4	-	0
Li3AlF6	FePO4	-	0
	LGPS	-	0
	LiFePO4	-	0
CsLiBeF4	FePO4	-	0
	LGPS	Li4GeS4, CsPS3, Li2S, Li2BeF4	-1
	LiFePO4	Fe2PO4F, LiZr2(PO4)3, LiF	-7
Li4ZrF8	FePO4	LiFePO4F, Li2ZrF6	-8
	LGPS	ZrS2, Li3PS4, GeS2, LiF	-18
	LiFePO4	-	0
Na3Li3Sc2F12	FePO4	NaFePO4F, LiFePO4F, ScF3	-6
	LGPS	Li3PS4, Na2Ge2S5, NaScS2, GeS2, LiF	-15
	LiFePO4	Fe2PO4F, AlPO4, Li3AlF6, MgF2	-8
LiMgAlF6	FePO4	-	0
	LGPS	Li3PS4, Li3AlF6, LiAlS2, GeS2, MgF2	-7
	LiFePO4	-	0
Na3Li3Al2F12	FePO4	-	0
	LGPS	Li3AlF6, Li3PS4, Na2GeS3, LiF, LiAlS2	-1
	LiFePO4	-	0
DLI :2D-2E7	FePO4	-	0
RbL12Be2F /	LGPS	Rb3PS4, Li3PS4, Rb2Ge2S5, BeS,	11
		Li2BeF4	-11
	LiFePO4	-	0
LiF	FePO4	LiFePO4F	-12
	LGPS	-	0
	LiFePO4	-	0
LiYF4	FePO4	-	0
	LGPS	-	0
	LiFePO4	-	0
KLiBeF4	FePO4	KFePO4F, Li2BeF4, BeF2	-10
	LGPS	K3PS4, K2GeS3, Li2S, Li2BeF4	-20
	LiFePO4	-	0
Cs2LiAl3F12	FePO4	-	0
	LGPS	Li4GeS4, Li3AlF6, CsPS3, LiAlS2	-18
	LiFePO4	-	0
LiLuF4	FePO4	-	0
	LGPS	-	0

Table S4. Detailed chemical reactions of screened coating candidates (corresponding to the compounds in Table 1, main text) toward LiFePO4, FePO4, and LGPS.

	LiFePO4	_	0
Li2BeF4	FePO4		0
	LGPS		0
	LiFePO4		0
LiErF4	FePO4		0
	LGPS		0
	LiFePO4	_	0
RbLiBeF4	FePO4		0
	LGPS	Rb2GeS3, Rb3PS4, Li2S, Li2BeF4	-19
	LiFePO4	-	0
Li4ScF7	FePO4	LiFePO4F, ScF3	-9
	LGPS	Li3PS4, LiScS2, GeS2, LiF	-9
	LiFePO4	_	0
LiMgPO4	FePO4	Li3Fe2(PO4)3, Mg3(PO4)2	-2
C C	LGPS	Mg2GeS4, Li3PS4, Li3PO4	-6
	LiFePO4	-	0
LiZr2(PO4)3	FePO4	_	0
	LGPS	Li3PS4, GeS2, ZrS2, Li3PO4	-11
	LiFePO4	_	0
Li4Be3P3BrO12	FePO4	_	0
	LGPS	_	0
	LiFePO4	_	0
Li4Be3P3ClO12	FePO4	_	0
	LGPS	Li3PS4, LiCl, GeS2, Li3PO4, BeO	-1
	LiFePO4	-	0
Li3PO4	FePO4	Li3Fe2(PO4)3	-6
	LGPS	-	0
	LiFePO4	-	0
	FePO4	-	0
L13Sc(PO4)3	LGPS	Li4P2O7, LiScP2O7, GeS2, GeS14, Li3PO4	-12
	LiFePO4	-	0
Li4Be3P3IO12	FePO4	-	0
	LGPS	-	0
	LiFePO4	-	0
Li2Al(BO2)5	FePO4	Li3Fe2(PO4)3, FeBO3, AlPO4, Li3B7O12	-8
	LGPS	-	0
	LiFePO4	Fe2B2O5, Li3B7O12, Li3PO4	-5
Li2B4O7	FePO4	FeBO3, Li3Fe2(PO4)3, Li3B7O12	-8
	LGPS	Li4GeS4, Li3B7O12, Li2S, Li3PO4	-3
KLiB4O7	LiFePO4	K5B19O31, Fe2B2O5, Fe3BO5, Li3PO4, Fe	-8

	FePO4	K3Fe2(PO4)3, Fe2O3, Li3PO4, KB5O8	-20	
	LCDS	Li4GeS4, K3PS4, Li3B7O12, Li2S,	16	
	LOFS	Li3PO4	-10	
	LiFePO4	Fe2SiO4, Li3B7O12, Li3PO4, SiO2	-9	
LiSiBO4	FePO4	FeBO3, Li3B7O12, Li3PO4, SiO2	-20	
	LGPS	Li3PO4, Li4GeS4, Li3B7O12, SiO2, Li2S	-1	
	LiFePO4	LiB5H2O9, Fe2B2O5, Li3PO4, B(HO)3	-3	
Li3B5(HO5)2	FePO4	LiB5H2O9, Li3B7O12, LiFePHO5	-18	
	LGPS	LiH2, Li3B7O12, Li4GeS4, H2S, Li3PO4	-9	
		Fe2B2O5, Fe3BO5, Rb5B19O31,	7	
	LIFeP04	Li3PO4, Fe	-/	
RbLiB4O7	FePO4	FeBO3, Rb5B19O31, Fe2O3, Li3PO4	-18	
	LODO	Rb3PS4, Rb2GeS3, Li3B7O12, Li2S,	10	
	LGPS	Li3PO4	-18	
	LiFePO4	Fe2SiO4, Li3B7O12, Li3PO4, SiO2	-7	
LiSi2BO6	FePO4	FeBO3, Li3B7O12, Li3PO4, SiO2	-14	
	LGPS	-	0	
	LiFePO4	-	0	
Li3B7O12	FePO4	-	0	
	LGPS	-	0	
	LiFePO4	-	0	
LiAl(Si2O5)2	FePO4	Li3Fe2(PO4)3, AlPO4, SiO2, Fe2O3	-7	
	LGPS	-	0	
	LiFePO4	-	0	
	FePO4	NaZr2(PO4)3, Na3Fe3(PO4)4, Fe2O3,	-16	
NaLiZr(Si2O5)3		Li3PO4, SiO2		
	LODG	Na2ZrS3, Li4GeS4, Li2ZrS3, SiO2,	-12	
	LGPS	Li3PO4		
	LiFePO4	-	0	
KLi3Zr2(Si2O5)6	FePO4	KZr2(PO4)3, Fe2O3, Li3PO4, SiO2	-14	
	LGPS	Li4GeS4, Li2ZrS3, K3PS4, SiO2, Li3PO4	-5	
	LiFePO4	-	0	
LiAl(SiO3)2	FePO4	AlPO4, SiO2, Fe2O3, Li3PO4	-10	
	LGPS	-	0	
	LiFePO4	-	0	
G L (C12	E DO4	Fe2PClO4, Li3Fe2(PO4)3, Cs2FeCl6,	1	
CsL1Cl2	FePO4	CsCl	-1	
	LGPS	-	0	
	LiFePO4	Fe2PClO4, Li3PO4, CsLiCl2	-2	
G L 2012	E 004	Fe2PClO4, Li3Fe2(PO4)3, CsLiCl2,	0	
CsL12Cl3	FePO4	Cs2FeCl6	-9	
	LGPS	-	0	
LiCl	LiFePO4	Li3PO4, Fe2PClO4	-2	

	FePO4	Li3Fe2(PO4)3, LiFeCl4	-9	
	LGPS	-	0	
	LiFePO4	-	0	
Li2B3O4F3	FePO4	-	0	
	LGPS	Li3PS4, Li5B7S13, Li3B7O12, GeS2, LiF	-5	
NaLiMgPO4F	LiFePO4	-	0	
	E-DO4	Li3PO4, Na3Fe3(PO4)4, Mg2PO4F,	12	
	rer04	MgF2	-15	
	LCDS	Na3PS4, Na2GeS3, Li3PO4, Mg2PO4F,	-18	
	LOPS	MgS, MgF2		
	LiFePO4	-	0	
Li2B6O9F2	FePO4	LiB6O9F, LiFePO4F	-1	
	LGPS	Li3PS4, Li5B7S13, Li3B7O12, GeS2, LiF	-4	

Table S5. Detailed chemical reactions of excluded compounds in the last screening stepagainst LiFePO4 and FePO4.

Formula	Electrode	Products	Δ <i>E</i> (meV/atom)
	LiFePO4	LiFeBO3, Li3PO4, NdBO3	-46
Li6Nd(BO3)3	FePO4	Li3PO4, NdFe3(BO3)4, NdPO4	-97
	LiFePO4	-	0
KLiDyF5	FePO4	KFePO4F, LiDyF4	-29
	LiFePO4	Li3PO4, LiFeBO3, HoBO3	-47
L16H0(BO3)3	FePO4	Li3PO4, HoBO3, Fe2O3, Li3B7O12	-91
	LiFePO4	-	0
KL1H0F5	FePO4	KFePO4F, LiHoF4	-29
G I .F2	LiFePO4	Cs2FeF4, Li3PO4	-17
CsL1F2	FePO4	Cs3FeF6, Li3PO4	-50
1.2410.05	LiFePO4	Al2FeO4, Fe2SiO4, LiAlSiO4, Li3PO4	-26
LIJAISIOS	FePO4	LiAlSiO4, Fe2O3, Li3PO4	-58
1.102	LiFePO4	Al2FeO4, Li3PO4	-24
L1AIO2	FePO4	Fe2O3, Li3PO4, LiAl5O8	-51
	LiFePO4	-	0
KLiGdF5	FePO4	KFePO4F, LiGdF4	-28
	LiFePO4	-	0
KL1LuF5	FePO4	KFePO4F, LiLuF4	-30
1.003	LiFePO4	Fe2B2O5, Li3B7O12, Li3PO4	-21
LIBO2	FePO4	FeBO3, Li3B7O12, Li3PO4	-42
	LiFePO4	-	0
KL110F3	FePO4	LiTbF4, KFePO4F	-29
L:(D400	LiFePO4	Fe2B2O5, Li3B7O12, Li3PO4	-35
L16B4O9	FePO4	Li3B7O12, Fe2O3, Li3PO4	-70
L:25-(DO2)2	LiFePO4	ScFe2BO5, Li3PO4, ScBO3, Li3B7O12	-32
L13SC(BO3)2	FePO4	ScFe(BO3)2, Li3PO4	-63
	LiFePO4	Ta2FeO6, FeO, Li3PO4	-34
L131a04	FePO4	TaFeO4, Li3PO4	-92
	LiFePO4	LiFeBO3, Li3PO4, YBO3	-47
LI01 (BO3)3	FePO4	Li3PO4, YBO3, Fe2O3, Li3B7O12	-91
	LiFePO4	Nb2Fe3O8, Li3PO4	-33
LISIN004	FePO4	NbFeO4, Li3PO4	-86
VI IVE5	LiFePO4	-	0
KLIIF5	FePO4	KFePO4F, LiYF4	-28
KL TmE5	LiFePO4	_	0
KLIIMF3	FePO4	KFePO4F, LiTmF4	-29
KLiNdF5	LiFePO4	-	0

FePO4	KFePO4F, LiNdF4	-28

Formula	Atomly ID	ICSD ID	MP ID
Li3AlF6	0000093303	85171	mp-15254
CsLiBeF4	0000020963	9434	mp-18704
Li4ZrF8	0000032607	80398	mp-9308
Na3Li2Sc2F12	0000101912	27007	mp-14023
LiMgAlF6	0000006756	5007	mp-1193222
Na3Li3Al2F12	0000105344	9923	mp-6711
RbLi2Be2F7	0000010397	72	mp-560518
LiF	0000057894	41409	mp-1138
LiYF4	0000002504	96727	mp-3700
KLiBeF4	0000020198	2939	mp-6253
Cs2LiAl3F12	0000099318	15785	mp-13634
LiLuF4	0000036754	152948	mp-561430
Li2BeF4	0000004787	14360	mp-4622
LiErF4	3001234939		
RbLiBeF4	3001345161		
Li4ScF7	3001070431		
LiMgPO4	0000083694	201138	mp-9625
LiZr2(PO4)3	0000018210	91112	mp-10499
Li4Be3P3BrO12	0000114496	80472	mp-554560
Li4Be3P3ClO12	0000028543	74525	mp-560894
Li3PO4	0000061102	10257	mp-13725
Li3Sc(PO4)3	0000110893	62301	mp-6565
Li4Be3P3IO12	0000041332		mp-1211168
Li2Al(BO2)5	0000125099	279578	mp-557177
Li2B4O7	0000030688	34670	mp-4779
KLiB4O7	0000088006	93601	mp-6648
LiSiBO4	0000088234	67536	mp-8874

 Table S6. Identities of coating candidates corresponding to different databases, including Atomly, ICSD, and MP.

Li3B5(HO5)2	0000117025	20155	mp-707105
RbLiB4O7	0000005274	93602	mp-6787
LiSi2BO6	0000070152	90849	mp-556531
Li3B7O12	0000026116	68475	mp-16828
LiAl(Si2O5)2	0000063234	31283	mp-6442
NaLiZr(Si2O5)3	0000078334	100631	mp-15543
KLi3Zr2(Si2O5)6	0000013946	89899	mp-16055
LiAl(SiO3)2	0000058662		mp-1222469
CsLiCl2	3001483162	423634	mp-1188344
CsLi2Cl3	0000045002	423635	mp-1190687
LiCl	0000122077		mp-1185319
Li2B3O4F3	0000028336	423661	mp-1196457
NaLiMgPO4F	0000087290	426199	mp-1196828
Li2B6O9F2	0000054059	423435	mp-1200209

Supporting Note 1. Introduction of Atomly database

The Atomly materials database (URL: atomly.net) is a comprehensive repository of inorganic crystalline compounds, housing the DFT calculated properties of approximately 349,000 materials. This valuable data encompasses essential information such as optimized structures, energy band and density of states, elasticity, and thermodynamic stability. The dataset was meticulously developed through high-throughput DFT runs, utilizing a protocol akin to the one used in the Materials Project. As such, this data is compatible with the Materials Project, adding significant depth to the overall available dataset as it is currently 2.3 times larger. Notably, Atomly features an abundance of newly added structures, primarily composed of transition metal-containing ionic compounds. These structures have been created through element substitution and then screened for their thermodynamic stability by an AI model. Consequently, the dataset is particularly well-suited for electrochemical applications.

Supporting Note 2. Verification of the Accuracy of BV Analysis

In this study, as an important criterion for preliminarily assessing Li-ion diffusivities, it is essential to quantitatively evaluate the accuracy of bond-valence (BV) method. We compiled a dataset comprising eighteen specific Li-ion migration pathways, with each pathway's migration barrier assessed using both NEB and BV methods. As depicted in Fig. S42, it is evident that BV analysis can reliably yield reasonable migration barriers for Li-ion conductors, with a mean absolute error (MAE) of 115 meV. Additionally, Chen et al. conducted a more comprehensive benchmark on the mobile-ion migration barriers predicted by BV analysis.¹ Their findings align with our predictions as well. Hence, as a low-cost computational approach, BV analysis is a suitable method for the preliminary assessment of the dynamic properties of candidate materials, particularly in the context of high-throughput screening.

Figure S42. Comparing Li-ion migration barriers between NEB and BV methods.

Supporting Note 3. Potential Passivation

Self-limiting interfacial degradation, i.e., passivation, is another crucial factor in forming a pseudo-stable layer between two contacting materials, as in the case of the Li-LiPON interface. Firstly, we assess the possibility of passivation under the circumstances where sulfide electrolytes come into direct contact with the LFP cathode. Detailed reaction products between sulfide electrolytes and LiFePO4/FePO4 are presented in Table S2 and S3, Supporting Information. It is shown that iron sulfides, such as FeS, FeS2, and FePS, dominate the reaction products. These compounds demonstrate moderate-to-high electronic conductivities, which will enable the continued electrochemical oxidation of sulfide electrolytes. Hence, we predicted that sulfide electrolytes cannot form passivation layers against the LiFePO4 cathode, aligning with recent experimental observations indicating poor interfacial compatibility between Li6PS5Cl and LiFePO4.² Additionally, for the fifty-one compounds excluded from being coating candidates solely based upon the consideration of chemical stability in the last screening step, we investigate the possibility of forming passivation layers between them and LiFePO4/FePO4. Two crucial features for passivation are taken into consideration: reaction products cannot contain electronically conducting compounds, and Li-ion conducting materials should dominate the final decomposition products. After investigation, it was found that nineteen compounds simultaneously meet both criteria. Their detailed reactions towards LiFePO4/FePO4 are listed in Table S5. Here, we highlight a promising compound, i.e., Li6B4O9 (ICSD id: 427421), that may form a robust passivation layer against the LiFePO4 cathode, with the chemical reactions of

 $Li_6B_4O_9 + LiFePO_4/FePO4 \rightarrow Fe_2B_2O_5/Fe_2O_3 + Li_3B_7O_{12} + Li_3PO_4$ where Li-ion containing materials, Li3B7O12 and Li3PO4, dominate the decomposition products, and their potentially high Li-ion diffusivities have been evaluated in Table 1, main text.

REFERENCES

- Chen, H.; Wong, L. L.; Adams, S. *SoftBV* a Software Tool for Screening the Materials Genome of Inorganic Fast Ion Conductors. *Acta Crystallogr B Struct Sci Cryst Eng Mater* 2019, 75 (1), 18–33. https://doi.org/10.1107/S2052520618015718.
- (2) Cronk, A.; Chen, Y.-T.; Deysher, G.; Ham, S.-Y.; Yang, H.; Ridley, P.; Sayahpour, B.; Nguyen, L. H. B.; Oh, J. A. S.; Jang, J.; Tan, D. H. S.; Meng, Y. S. Overcoming the Interfacial Challenges of LiFePO 4 in Inorganic All-Solid-State Batteries. *ACS Energy Lett.* 2023, 8 (1), 827–835. https://doi.org/10.1021/acsenergylett.2c02138.