Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Förster Resonance Energy Transfer Enabled Photo-rechargeable Battery with an Energetically Misaligned Cu-Porphyrin Dye/Cu:V₂O₅ Photocathode

Souvik Naskar^a, Debanjan Maity^a, Anamika Dixit^a, Marina Freitag^b, Kusum Kumari^a, Saurabh Kumar Singh^a, Melepurath Deepa^{a,*}

^aDepartment of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502284,
Sangareddy, Telangana, India
*E-mail: mdeepa@chy.iith.ac.in
^bSchool of Natural and Environmental Science, Bedson Building, Newcastle University, NE1
7RU Newcastle upon Tyne, United Kingdom

Figure S1 Differential pulse voltammetry (DPV) was performed on a Biologic SP-300 machine, where the pulse height P_H was maintained at a constant level with respect to the base potential. The record of the experiment is a plot of the current difference, $\delta I = I_f$ (current before the pulse) $- I_r$ (current late in the pulse) versus the base potential. Typical values for the parameters are: $S_t = 500 \text{ ms}$; $S_H + P_H = 7.5 \text{ mV}$; pulse width = 50 ms and $S_H/S_t = 2 \text{ mV/s}$.

Figure S2 CV plot of a TiO_2/FTO film in a three-electrode cell with a Pt rod as a CE and Ag/AgCl/KCl as a RE in a 1 M ZnCl₂/ γ -BL electrolyte.

Figure S3 (a) DFT-optimised bulk structure of CuTPP, (b) Cluster Model for TD-DFT calculations and (c) TD-DFT computed absorption spectrum of CuTPP. (d) DFT-optimised bulk structure of Cu:V₂O₅, (e) Cluster Model for TD-DFT calculations and (f) TD-DFT computed absorption spectrum of Cu:V₂O₅.

Figure S4 (a) HOMO of CuTPP, (b) LUMO of CuTPP and (c) orientation of the dipole moment of CuTPP. (d) HOMO of Cu: V_2O_5 , (e) LUMO of Cu V_2O_5 and (f) orientation of the dipole moment of Cu V_2O_5 .

Figure S5: Periodic DFT optimized V_2O_5 , interstitial doped structure and substitutional doped structure.

Figure S6 (a) Fluorescence spectrum and (b) quantum yield plots for CuTPP.

Figure S7 Integrated fluorescence intensity (obtained at $\lambda_{ex} = 450$ nm) versus absorbance of the donor (Cu:V₂O₅) and reference (Rhodamine 6G) films.

Figure S8 EQE versus wavelength plots of D-A and A-only cells and absorbance versus wavelength of donor.

Figure S9 EQE versus wavelength plots of $TiO_2/Cu:V_2O_5$ and TiO_2/V_2O_5 based cells (without the acceptor, CuTPP).

Table S1 Solar cell parameters of photo-batteries with 1 M $ZnCl_2/\gamma$ -BL electrolyte and Zn FLs-AC anode under irradiance (1 sun, 100 mW cm⁻², AM 1.5) based on different photocathodes.

Photocathode	V _{OC} (mV)	J _{SC} (mA cm ⁻²)	FF (%)	PCE _{best} (%)	PCE _{average} (%)
TiO ₂ /CuTPP	571	2.44	27.0	0.38	0.34±0.023
TiO ₂ /CuTPP/V ₂ O ₅	1089	4.99	42.9	2.33	2.01±0.18
TiO ₂ /CuTPP/Cu:V ₂ O ₅	1414	7.13	54.7	5.51	4.98±0.37

TiO ₂ /CuTPP	V _{OC} (mV)	J _{SC} (mA cm ⁻²)	FF (%)	PCE (%)
Cell-1	571	2.44	27.3	0.38
Cell-2	542	2.28	27.1	0.33
Cell-3	523	2.20	27.0	0.31
Cell-4	546	2.32	27.2	0.34
Cell-5	534	2.27	27.1	0.33
Average	543	2.30	27.1	0.34

Table S2 Five cell data for photo-batteries.

TiO ₂ /CuTPP/V ₂ O ₅	V _{OC} (mV)	J _{SC} (mA cm ⁻²)	FF (%)	PCE (%)
Cell-1	1089	4.99	42.9	2.33
Cell-2	936	4.58	42.8	1.83
Cell-3	1008	4.46	42.8	1.92
Cell-4	939	4.76	42.7	1.90
Cell-5	1047	4.58	43.0	2.06
Average	1004	4.67	42.8	2.01

TiO ₂ /CuTPP/Cu:V ₂ O ₅	V _{OC} (mV)	J _{SC} (mA cm ⁻²)	FF (%)	PCE (%)
Cell-1	1414	7.13	54.5	5.49
Cell-2	1399	6.92	54.9	5.31
Cell-3	1360	6.64	54.6	4.93
Cell-4	1288	6.66	54.6	4.68
Cell-5	1260	6.54	54.7	4.51
Average	1344	6.78	54.7	4.98

Figure S10 (a) GCD plots of the $TiO_2/CuTPP/Cu:V_2O_5/Zn^{2+}/Zn$ Fls-AC photo-battery under varying intensities of impinging radiation. (b) Capacity versus intensity for the same cell.

Figure S11 (a) GCD plots and (b) CV plots of the CF/TiO_2/CuTPP/Cu:V_2O_5/Zn^{2+}/Zn Fls-AC cell.

Figure S12 GCD plots of cells without CuTPP and having only $Cu:V_2O_5$ in dark and light under 100 mA g⁻¹.

Figure S13 Comparison of CV- and GCD- plots of photo-battery in dark (at 25 °C), in dark (at 50 °C, thermal effect) and under irradiance (1 sun).

Figure S14 GCD curves recorded before and after 20 days of continuous photocharging and photo-discharge (under 1 sun + applied current density of 100 mA g⁻¹) for the TiO₂/CuTPP/Cu:V₂O₅/Zn²⁺/Zn Fls-AC photo-battery.

Figure S15 (a) Absorbance of a CuTPP/FTO film recorded intermittently during prolonged exposure to sunlight. (b) Photograph of a separator extracted from the photo-battery after storage for ~ 6 months.

Cell	Electrolyte	ΔV	Specific	Specific Capacity	PCE	$\eta_{overall}$
configuration		(V)	Capacity (Dark)	(Light)	(%)	(%)
$(VO_2/ZnO@)$	Aq. 3 M	0.2-	367 mAh g ⁻¹ at	432 mAh g ⁻¹ at 200 mA	0.51	
CF//Zn Foil ^[6]	$Zn(CF_3SO_3)_2$	1.4	200 mA g^{-1}	g ⁻¹ and 12 mW cm ⁻² light intensity at 455 nm		
MoS ₂ /ZnO@CF/	Aq. 3 M	0.2-	245 mAh g ⁻¹ at	340 mAh g ⁻¹ at 100 mA	1.8	
/ Zn Foil ^[7]	$Zn(CF_3SO_3)_2$	1.2	100 mA g^{-1}	g ⁻¹ and 12 mW cm ⁻² light intensity at 455 nm		
VO ₂ /ZnO@CF//	Aq. 3 M	0.2-	282 mAh g ⁻¹ at	315 mAh g ⁻¹ at 200 mA	0.18	
Zn Foil ^[8]	$Zn(CF_3SO_3)_2$	1.4	200 mA g^{-1}	g ⁻¹ and 12 mW cm ⁻² light intensity at 455 nm		
P3HT/V ₂ O ₅ /rGO	Aq. 3 M	0.2-	190 mAh g ⁻¹ at	370 mAh g^{-1} at 50 mA	1.2	
@CF//Zn Foil ^[9]	$Zn(CF_3SO_3)_2$	1.6	50 mA g^{-1}	g ⁻¹ and 12 mW cm ⁻² light intensity at 455 nm		
FTO/TiO ₂ /CuTP	1 M ZnCl ₂ in	0.2-	120 mAh g ⁻¹ at	150 mAh g ⁻¹ at 100 mA	2.33	3.3
P/V ₂ O ₅ //Zn Fls-	γ-BL	2.0	100 mA g^{-1}	g^{-1} and 1 sun (100 mW		
AC/Ni Foam				$cm^{-2})$		
(This Work)						
FTO/TiO ₂ /CuTP	$1 \text{ M ZnCl}_2 \text{ in}$	0.2-	$210 \text{ mAh g}^{-1} \text{ at}$	268 mAh g ⁻¹ at 100 mA	5.51	3.9
$P/Cu:V_2O_5//Zn$	γ-BL	2.0	100 mA g^{-1}	g^{-1} and 1 sun (100 mW		
Fls/N1 Foam				cm ⁻²)		
(This Work)						

Table S3 Comparison of storage and conversion performances of Zn-ion based photo-batteries from literature.

CF: Carbon Felt, Aq.: Aqueous, γ-BL: γ-Butyrolactone

Figure S16 Photographs of a TiO₂/CuTPP film immersed in the electrolyte: 1 M ZnCl₂/ γ -BL, showing its good stability.

Figure S17 (a) Photograph of a photo-charged $TiO_2/CuTPP/Cu:V_2O_5/Zn^{2+}/Zn$ Fls-AC photobattery and (b) cycling stability over 500 charge-discharge cycles, at 500 mA g⁻¹, in light (1 sun) and in dark.

Table S4 Fitted parameters of the Nyquist plots for $TiO_2/CuTPP/Oxide/Zn^{2+}/Zn$ Fls-AC photobatteries in dark and light (1 sun, 100 mW cm⁻² irradiance).

Cell configuration	R	R	C.	V		
Cell configuration	$(\mathbf{O} \ \mathrm{am}^2)$	$(\mathbf{O} \mathrm{am}^2)$	C_{dl}	$(mS a^{1/2} am^{-2})$		
	(<u>12 cm²</u>)	(<u>12 cm²</u>)	(µr cm ⁻)			
V ₂ O ₅ (Dark)	46.0	3643.7	0.4	0.6		
V ₂ O ₅ (Light)	44.0	1863.2	0.3	2.1		
Cu:V ₂ O ₅ (Dark)	43.4	5.5	4.5	5.0		
Cu:V ₂ O ₅ (Light)	41.5	7.2	0.3	9.4		
$TiO_2/Cu:V_2O_5/Zn^{2+}/Zn$ Fls-AC (1 sun, 100 mW cm ⁻² irradiance):						
$TiO_2/Cu:V_2O_5/Zn^{2+}/Zn$ Fls-AC (Light):						
Donor Only Cell	51.0	51.5	430			

Calculation of overall photoconversion and storage efficiencies ($\eta_{overall}$):

 $\eta_{overall} = E_{battery} \times A_{battery} \times 100 / P_{light} \times t_{charging} \times A_{solar}$

In the above equation, $E_{battery}$ is the energy density of the photo-battery in W s cm⁻², obtained from the capacity corresponding to full discharge to 0 V in dark under an applied current density (j = 180 mA g⁻¹) when photocharged under 1 sun irradiance to a given voltage under no applied bias or current in the preceding cycle. Here, $\Delta V_{(dark discharge)}$ values are 1.2 V and 1.4 V respectively for the TiO₂/CuTPP/V₂O₅/Zn²⁺/Zn Fls-AC and the TiO₂/CuTPP/Cu:V₂O₅/Zn²⁺/Zn Fls-AC photo-batteries. The active electrode areas (A_{battery} and A_{solar}) are 0.5 cm² each and P_{light} was taken as 100 × 10⁻³ W cm⁻². The time required to photo-charge the photo-batteries to 1.2 S-12 and 1.4 V respectively without the application of any I or V, under 1 sun irrdiance is $t_{charging}$, and $t_{charging} = 380.8$ s and 163.6 s for Cu:V₂O₅ and V₂O₅ respectively. The energy density is calculated using the following equation.

$$E_{\text{battery}} = \frac{1}{m} \int_{0}^{t} Vidt$$

In the above equation, 'm' is the active mass loading, 'i' is the applied current during dark

discharge, $V \int_{0}^{5} dt$ is the integrated area in the voltage-time plot. The energy densities were calculated to be 1.48 and 0.55 W s cm⁻² for the photo-batteries with Cu:V₂O₅ and V₂O₅ respectively, from the data shown in Figure 7a. Using these values, the $\eta_{overall}$ values were estimated to be 3.9% and 3.3% respectively.

Scheme S1 Schematic showing step-wise synthesis of (a) V_2O_5 and $Cu:V_2O_5$ and (b) CuTPP dye.