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S1 Operational procedure of HTS platform
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Figure S1: Schematic overview of the LIMS — conductivity and electrolyte modules interaction work-
flow.
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S2 LECA - The Liquid Electrolyte Composition Analysis Pack-
age

The core of the LECA package is a python library built to implement and extend the data-driven
approach used by' to model and analyze the conductivity of liquid electrolyte formulations. As
depicted in Figure S2 it provides a simplified and generalized workflow to build robust machine learning
regression models and facilitate a better understanding of composition performance.
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Figure S2: LECA package schematic.? # This Figure is still a placeholder for figure in correct format.

The package uses Jupyter-Notebooks® as usage examples and customizable workflows. As a rule,
the library uses popular python libraries over proprietary code when possible. A full list of libraries
used is included in Table S1, but the main work underlying the LECA package is the Scikit-learn
library. 4

Table S1: Used Libraries

Library Version Ref.
Jupyter Notebook  6.4.11 5
Scikit-learn 1.3.1 4
NumPy 1.22.3 6
Matplotlib 3.5.1 7
Pandas 1.4.2 8,9
SciPy 181 10
Uncertainties 3.1.7 1
MAPIE 0.5.6 3
HDBSCAN 0.8.28 12
Seaborn 0.11.2 13
Sphinx 5.0.2 14
GPyOpt 1.2.6 2
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S2.1 Module Overview

The LECA library is comprised of three main modules: prep, fit and analyze. In order to keep the
Notebooks as concise as possible, an additional module notebook_utils is included for some frontend-
specific utility functions.

S2.2 LECA.prep

Key features: data import and dataset overview, estimate feature importance, generate statistics from
repeated measurements, optional Arrhenius surrogate model.

The prep module is designed to extract raw measurement data and convert it via a generic
feature-engineering process to train machine learning models. The module imports the in-house high-
throughput experimental measurement JSON format or standard labeled CSV tables into Pandas
DataFrames for processing.® In order to help identify extraneous or irrelevant features, feature cor-
relation and covariance matrices are automatically provided as well as an estimation of the relative
feature-importance for each objective function (generated by fitting a default Scikit-learn random
forest).

The prep module also includes a function to combine repeated measurements (identical input
features) to the mean value and standard deviations. This conversion is automatically detected by
the fit module and can be used to weight the bias of specific measurements or filter out measurement
values with unusually high deviations.

Finally, as the LECA package was conceived to model liquid electrolyte conductivity, the prep mod-
ule includes an optional function to convert the dataset with an Arrhenius surrogate model (Equation
(S1)). To apply the Arrhenius surrogate model LECA groups measurement data by all features exclud-
ing the inverse temperature and fits the measured log o values as a function of the inverse temperature
B, the corresponding Sy(X), S1(X) and S2(X) coefficients then become the new objective functions.

logo = So(X) — S1(X)(B — Bo) — S2(X)(B — Bo)? (S1)

Where o is the conductivity, X is the vector of non-temperature features, the onset temperature is gy
and f is the inverse temperature (both expressed in [&I?O] units). Note, the onset temperature Sy is
a constant, defined as by default as the inverse temperature where the So(X) and S1(X) coefficients

are minimally correlated.

S2.3 LECA. fit

Key features: data scaling / splitting / grouping, Linear / Random Forest / Gaussian Process /
Neural Network regression models, GPyOpt hyperparameter optimization?, cross-validation scoring,
uncertainty estimation, objective optimization search.

S2.3.1 Initialization, Scaling, Grouping, Splitting

The fit module contains a single object, the WorkFlow. This object takes the prepared dataset and
handles all of the rescaling, data splitting (test / train / validation splits) and scoring of models. The
user can choose regression models to add to the WorkFlow, or use the autoML function to automatically
select, train and score a subset of the supported regression models based on the size of the dataset.
Loading the object is as simple as shown in Figure S3.

One of the main benefits of using the LECA package is that it removes the tedious task of keeping
careful track of each test, train and validation split. It is designed to avoid any data-leakage, the
composition_features argument ensures that the test/train splits are grouped in a way to avoid the
easy mistake of e.g. mixing measurement results from the same electrolyte composition at different
temperatures in the training and testing datasets. Doing so would result in exceptionally low prediction
errors while simply modeling the temperature dependency of the objective function instead of testing
the model’s ability to predict novel compositions’ performance.

The validation holdout data is set aside and completely excluded from any model training or data
scaling to avoid data leakage. This holdout data serves as a final check to ensure that the models are
indeed effectively predictive on unseen data.

Note that LECA internally scales all features, using standard scaling” as implemented in Scikit-
Learn, whereas it stores unscaled objective functions Sy, S; and Ss.
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from LECA import fit
wf = fit.WorkFlow(

dataset_df, # Pandas DataFrame

[’salt’, ’ec:emc’, ’temperature’], # Features

[’ conductivity’, ’viscosity’], # Objective functions

random_state=42, # State passed to randomized functions for

repeatability
Generate polynomial features to deg. 3
Fraction of DataFrame withheld for
validation
composition_features=[’salt’, ’ec:emc’], # Data grouped by these features THEN
split (cross-validation /
validation)
n_jobs=-1 # Use all possible CPU cores for parallel
computations

**

polynomial_degree=3,
validation_holdout=0.1,

**

Figure S3: Initializing a LECA workflow.

S2.3.2 Adding Models, Bayesian Hyperparameter Selection and Cross-Validation Scor-
ing

The LECA package includes Linear'®, Random Forest ', Gaussian Process'” !'° and Multilayer Per-

ceptron (neural network)!%2° regression models. LECA also supports automated bayesian hyperpa-
rameter optimization for the Random Forest and Neural Network models. ? Furthermore, it includes an
optimization routine for Linear Regression models. Once the user has selected the models to include
in the WorkFlow, the comparative quality of the models is scored using cross-validation, ranking the
best model by the average mean-squared-error score over all cross-validation folds.

S2.3.3 Uncertainty Estimation

Predictive models are of course useful, but accurate prediction uncertainty estimation is the tool which
unlocks the possibility of active learning and Bayesian optimization.?! Gaussian Process Regression
is a particularly attractive model type as it inherently includes prediction uncertainty. For Linear,
Random Forest and Multilayer Perceptron regression models the LECA package uses the MAPIE
(Model Agnostic Prediction Interval Estimator) library.® The LECA package implements two methods
based on MAPIE bootstrapping and allows the user to freely choose which to use for uncertainty
estimation.

MAPIE is an implementation of the jackknife resampling strategy introduced by Foygel-Barber
et al. (2020)%22. LECA uses the jackknife+-after-bootstrapping method from MAPIE to estimate
the confidence interval of a prediction with theoretical guarantees for coverage.?® In practice this
method involves generating bootstrapped datasets and training copies of the regression model on the
bootstrapped datasets. The jackknife step then involves calculating the conformity score, or interval
between the prediction of the bootstrapped models and values excluded from the bootstrapped data.?3
While computationally expensive, this method gives information on the variance of the regression
model from the bootstrapping process, as well as the predictive quality of the model for unseen data.
Finally, the confidence interval is calculated as the equivalent interval from the max prediction from
the set of bootstrapped models plus the conformity scores (as the upper bound) and the min prediction
minus the conformity scores (as the lower bound).

As a second option, equivalent to the method used in our previous work', the same bootstrapped
models used by MAPIE can be used to generate a prediction distribution which reflects the impact
of varying model training input on the output prediction. The standard deviations of the set of
bootstrapped models’ predictions can then be taken as an estimation of the epistemic uncertainty of
the ensemble of models.

Further, having already expended the computational cost of retraining manifold bootstrapped
models to estimate uncertainty for non-GPR models, by default LECA uses the mean predictions of
the ensemble of bootstrapped models for predictions to help mitigate model bias caused by noisy or
outlier data.
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S2.3.4 Objective Optimization Search

LECA .WorkFlow also includes an objective optimization search method. This uses the SciPy opti-
mization 0 function to search the design space with the trained models for the composition which
maximizes/minimizes the objective function. Alternately it can be used to search for the point with
the highest Bayesian Expected Improvement, maximal model uncertainty or upper/lower confidence
bounds (objective prediction + uncertainty).

LECA.analyze

Key features: comparative model performance overview, training data size:prediction accuracy analysis

The analysis module includes two functions to gain further insight into the relative performance
of different model types. The performance_plot function is a simple visualization tool for displaying
the average cross-validation scores of all of the trained models (Training time, Mean Absolute Error,
Mean Squared Error and R2 score for the training and test folds).

The datasize_performance function trains copies of a model with randomized subsamples of the
dataset with increasing training dataset sizes and scores the model’s predictive accuracy. This tool
helps show the trend of increasing data on predictive accuracy, which can inform the potential value
of generating further data.

Furthermore, the analysis module includes functions to analyze the trained models further, offering
the possibility to plot experimental and predicted Arrhenius fits, as well as 1-dimensional and 2-
dimensional slices of predictions through the hyper-dimensional feature space.

S6



S2.4 Data preparation workflow with LECA
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Figure S4: Flowchart of data preparation for LECA. The red arrows indicate the workflow applied to
fit the models in this work. Black arrows indicate optional paths and choices one may take to fit a

model.
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S2.5 LECA model fitting and evaluation workflow

Split .e,.

Figure S5: Flowchart of the LECA WorkFlow class. It is indicated where the libraries skikit-learn*
and Mapie? are used.
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S3 Fitting log(o)

Besides fitting models to the Arrhenius objectives S; calculated from Arrhenius fits of log oo it s
also possible to fit models to Arrhenius objectives S; calculated from an Arrhenius fit of logo. In
Figure S6a we show that for the NN model the MSE is well within standard errors when predicting Sy
for both log — — and logo. For S and S5 the MSEs are identical, because when going from log o to
log wL — only SO is modified. The main difference is that we predict with the former approach correct
behavior for xy;g.¢ — 0, which means that ¢ — 0. With the latter approach, we observe a finite o for
rLisa — 0 (Figure S6¢). The correct behavior for fitting log — arises from the back-transformation
to sigma, where we have to multiply the right-hand side of Equatlon S2 with zrigalt-

Finally, we clarify that it is advantageous to apply the Arrhenius fit and fit models for the objective
functions S;, instead of fitting log — directly without the Arrhenius fit, which can be seen in Fig-
ure S6b. The reason why the dlrect fit has a higher MSE is that we do not include physical information
about the temperature dependence in the model and the inverse temperature as an additional feature
leads to a higher model complexity, which makes the data more difficult to fit for the models.
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log — directly. As a model we use NN The black bars correspond to standard errors.
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S4 Arrhenius-Fit
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Figure S7: Example Arrhenius fits. The black open circles represent the mean of the individual
measurements (red crosses). The fit is displayed in blue together with its standard deviation.
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S4.1 Choice of 3y

In our previous work, we chose By such that Sy and S; are uncorrelated. Applying this approach we
yield an onset temperature 1/8y = Ty of 60°C. This should lead to optimized predictions of all S;.

S0, S1 correlation
| | | | I | |

0.00

-0.25

Correlation

-50 0 50 100

Figure S10: Correlation of Sy and S; for different onset temperatures.

However, when transforming back from the S; to the original ionic conductivity via

log( )=S80—51-(B—Bo) — Sz (B—Bo)? (82)

TLiSalt

there is a subtle effect on the error bars when calculating them using individual errors AS;

Alog( ) =ASy — ASy - (B — Bo) — ASy - (B — Bo)*. (S3)

TLiSalt

Directly for the onset temperature, only ASy is relevant (because 8 — 5y = 0), whereas for smaller
or larger temperatures also AS; and ASs are relevant and therefore the total error depends on the
temperature. This also means that the error for a certain temperature is clearly dependent on the
choice of By. Following this argument, it might be suitable to choose the onset temperature equal to the
temperature for which one wants to make predictions to reduce the model error. However, comparing
the overall performance of NN models trained for different onset temperatures (—20°C, 20°C and 60°C)
in terms of leave-one-out cross-validation scores we find that the NN model scores best for an onset
temperature of 20°C and 60°C, as shown in Figure S11.

Thus we decide to make predictions also for all other temperatures on models trained on Arrhenius
fits with an onset temperature of 60°C. In practice we do not expect large deviations in predictions
of models trained with different onset temperatures under the condition of similar MSEs. Another
argument is that the back-transformation for this model captures the experimental deviations at low
temperatures very well as shown in Figure S19¢c. Furthermore, the minimal correlation of Sy and S
seems to be most accurate to investigate the effects of features on these single objectives. Concluding,
if one wants to perform the Arrhenius fit once, it seems best to choose the onset temperature where
Sy and S7 are mostly uncorrelated.

Since the NN architecture is partly optimized to Arrhenius fits for 60°C the results might change
when testing different architectures for Arrhenius fit performed with other onset temperatures. How-
ever, due to the overall good performance of various different NN architectures, we expect that results
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Figure S11: Comparison of MSE of NN model trained on Arrhenius fits with different onset tempera-
tures. Leave-one-out CV scores are shown.

will be similar for other onset temperatures. This can be part of future work, to reveal the influence
of the choice of By in more detail.
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S4.2 Table of all Arrhenius fits

Table S2: Data of Arrhenius fits for all electrolyte formulations. Electrolyte formulation 194 (marked
by *) was not used for further model training and testing due to an insufficient fit (log(MAE) > —2.5).
Reported are for each electrolyte formulation the Arrhenius coefficients Sp, S (in units K) and So
(in units K?) as well as their standard deviations. Furthermore, the R2-score and the logarithm of
the mean absolute error of the Arrhenius fit are reported as well as the activation energy F, (in units
mJ/mol) at the onset temperature Top = 1/5y = 60°C.

TLiSalt TLiPF TEC TpPC So S1 Ss  Sopstd S; std S> std R2 IOg(MAE) E,

0 0.016 0.000 0.712 0.064 -0.379 0.483 0.405 0.007 0.082 0.080 0.991 -3.750  4.016
1 0.016 0.891 0.713 0.064 -0.346 0.519 0.517 0.014 0.138 0.162 0.990 -3.527  4.312
2 0.016 0.504 0.712 0.064 -0.369 0.511 0.428 0.011 0.084 0.091 0.992 -3.698  4.253
3 0.016 0.110 0.713 0.064 -0.376 0.391 0.583 0.008 0.063 0.072 0.986 -3.478  3.248
4 0.017  0.000 0.580 0.333 -0.411 0.485 0.201 0.005 0.021 0.017 0.999 -5.209  4.033
5 0.017 0.894 0.542 0.000 -0.390 0.203 0.722 0.035 0.190 0.197 0.980 -3.214  1.685
6 0.017 0.000 0.516 0.047 -0.357 0.425 0.223 0.038 0.196 0.181 0.951 -3.158  3.534
7 0.017  0.000 0.542 0.000 -0.424 0.109 0.752 0.020 0.164 0.198 0.984 -3.425  0.902
8 0.017 0.107 0.580 0.333 -0.433 0.502 0.191 0.004 0.022 0.021 0.999 -5.118  4.170
9 0.017 0.108 0.542 0.000 -0.419 0.282 0.532 0.035 0.301 0.353 0.940 -2.927  2.342
10 0.017  0.000 0.000 0.663 -0.449 0.484 0.181 0.006 0.025 0.021 0.999 -5.129  4.027
11 0.017 0.893 0.515 0.047 -0.420 0.315 0.304 0.007 0.057 0.067 0.996 -4.470  2.617
12 0.017 0.890 0.580 0.334 -0.414 0.497 0.209 0.003 0.012 0.012 0.999 -5.256  4.136
13 0.017 1.000 0.542 0.000 -0.249 0.183 0.730 0.014 0.075 0.059 0.994 -3.924  1.517
14 0.017 0.491 0.541 0.000 -0.405 0.273 0.482 0.027 0.235 0.294 0.966 -3.269  2.270
15 0.017 0.105 0.516 0.047 -0.341 0.408 0.210 0.056 0.215 0.181 0.953 -3.177  3.389
16 0.017 0.495 0.515 0.047 -0.415 0.282 0.447 0.028 0.264 0.321 0.962 -3.273  2.344
17 0.017 1.000 0.579 0.334 -0.429 0.465 0.239 0.007 0.028 0.022 1.000 -5.397  3.865
18 0.017 1.000 0.516 0.047 -0.408 0.327 0.381 0.022 0.204 0.258 0.971 -3.496  2.716
19 0.017 0.491 0.580 0.333 -0.415 0.515 0.188 0.003 0.012 0.011 0.999 -5.183  4.284
20 0.018 0.104 0.372 0.242 -0.439 0.455 0.156 0.004 0.016 0.014 0.999 -5.467  3.782
21 0.018 0.895 0.371 0.243 -0.459 0.451 0.183 0.003 0.015 0.014 1.000 -5.558  3.750
22 0.018 0.000 0.216 0.627 -0.449 0.479 0.201 0.004 0.016 0.014 1.000 -5.378  3.979
23 0.018 0.000 0.372 0.242 -0.443 0.445 0.160 0.005 0.019 0.015 0.999 -5.470  3.702
24 0.018 1.000 0.372 0.243 -0.461 0.450 0.185 0.005 0.023 0.019 0.999 -5.211  3.745
25 0.018 0.889 0.336 0.000 -0.531 0.412 0.157 0.002 0.012 0.012 0.999 -5.574  3.422
26 0.018 0.506 0.313 0.030 -0.531 0.432 0.135 0.004 0.013 0.011 0.999 -5.376  3.596
27 0.018 1.000 0.216 0.627 -0.469 0.460 0.237 0.002 0.012 0.011 1.000 -5.765  3.823
28 0.018 0.107 0.336 0.000 -0.525 0.415 0.136 0.003 0.010 0.008 1.000 -5.663  3.454
29 0.018 0.890 0.216 0.627 -0.459 0.504 0.203 0.006 0.026 0.023 0.999 -5.034 4.194
30 0.018 0.502 0.336 0.000 -0.530 0.424 0.141 0.004 0.015 0.012 0.999 -5.555  3.528
31 0.018 1.000 0.336 0.000 -0.523 0.441 0.146 0.003 0.016 0.014 0.999 -5.401  3.665
32 0.018 0.520 0.372 0.243 -0.469 0.450 0.177 0.004 0.025 0.022 0.999 -5.072  3.740
33 0.018 0.505 0.216 0.627 -0.457 0.501 0.195 0.003 0.016 0.015 0.999 -5.187  4.162
34 0.019 1.000 0.313 0.030 -0.536 0.424 0.152 0.003 0.017 0.015 0.999 -5.308  3.527
35 0.019 0.903 0.000 0.505 -0.486 0.447 0.174 0.003 0.017 0.015 1.000 -5.564  3.719
36 0.019 0.000 0.313 0.029 -0.526 0.451 0.109 0.006 0.021 0.016 0.999 -5.189  3.753
37 0.019 0.112 0.218 0.626 -0.470 0.501 0.183 0.004 0.017 0.015 0.999 -5.129  4.167
38 0.019 1.000 0.105 0.451 -0.494 0.451 0.173 0.004 0.016 0.014 0.999 -5.260  3.750
39 0.019 1.000 0.000 0.704 -0.484 0.453 0.241 0.004 0.015 0.012 1.000 -5.614  3.764
40 0.019 0.103 0.000 0.505 -0.476 0.448 0.154 0.003 0.017 0.017 0.999 -5.258  3.725
41 0.019 0.895 0.000 0.704 -0.478 0.453 0.248 0.002 0.013 0.015 0.999 -5.201  3.764
42 0.019 0.000 0.106 0.450 -0.474 0.463 0.147 0.004 0.017 0.016 0.999 -5.279  3.851
43 0.019 0.124 0.313 0.031 -0.528 0.424 0.135 0.005 0.026 0.022 0.999 -5.164  3.526
44 0.019 0.502 0.107 0.451 -0.474 0.448 0.172 0.002 0.008 0.006 1.000 -6.041  3.721
45 0.019 0.898 0.105 0.451 -0.471 0.484 0.150 0.004 0.014 0.011 0.999 -5.363  4.027
46 0.019  0.000 0.000 0.505 -0.475 0.443 0.159 0.005 0.024 0.021 0.999 -5.102  3.682
47 0.019 0.873 0.313 0.029 -0.535 0.439 0.141 0.003 0.014 0.014 0.999 -5.341  3.647

Continued on next page

S14



ZTLiSalt ZLiPF, TEC  ZPC So S1 S2 Sogstd Sistd Spstd R2 log(MAE) E,
48 0.019 0.106 0.000 0.704 -0.469 0.486 0.198 0.004 0.016 0.013 1.000 -5.483  4.039
49 0.019 0.511 0.000 0.705 -0.481 0.431 0.243 0.006 0.020 0.015 1.000 -5.691  3.586
50 0.019 0.504 0.000 0.505 -0.487 0.448 0.165 0.001 0.006 0.006 1.000 -5.622  3.721
51 0.019 0.497 0.203 0.148 -0.552 0.424 0.133 0.005 0.025 0.024 0.998 -4.981  3.524
52 0.019 0.106 0.106 0.451 -0.470 0.435 0.173 0.005 0.023 0.021 0.999 -5.158  3.618
53 0.019 1.000 0.202 0.148 -0.554 0.407 0.159 0.003 0.012 0.010 1.000 -5.694  3.383
54 0.019 0.000 0.203 0.149 -0.547 0.409 0.131 0.003 0.016 0.015 0.999 -5.240  3.402
55 0.019 0.113 0.202 0.148 -0.545 0.412 0.132 0.003 0.010 0.009 0.999 -5.469  3.429
56 0.019 1.000 0.048 0.272 -0.604 0.354 0.188 0.004 0.014 0.010 1.000 -5.798  2.941
57 0.019  0.505 0.000 0.304 -0.584 0.398 0.145 0.005 0.020 0.016 0.999 -5.398  3.308
58 0.019 0.888 0.202 0.148 -0.552 0.392 0.169 0.001 0.007 0.006 1.000 -6.068  3.262
59 0.019 0.000 0.048 0.273 -0.560 0.387 0.144 0.004 0.017 0.014 0.999 -5.408  3.221
60 0.019 1.000 0.000 0.304 -0.602 0.373 0.171 0.006 0.021 0.015 1.000 -5.772  3.102
61 0.019 0.495 0.049 0.272 -0.563 0.370 0.167 0.008 0.046 0.045 0.995 -4.503  3.075
62 0.019 0.891 0.049 0.272 -0.666 0.341 0.190 0.060 0.248 0.204 0.903 -2.932  2.835
63 0.020 0.884 0.000 0.304 -0.594 0.396 0.155 0.003 0.010 0.008 1.000 -5.818  3.290
64 0.020 0.000 0.000 0.304 -0.572 0.408 0.131 0.005 0.021 0.019 0.999 -5.271  3.396
65 0.020 0.102 0.000 0.304 -0.584 0.399 0.138 0.003 0.011 0.009 1.000 -5.708  3.316
66 0.020 0.146 0.050 0.276 -0.555 0.388 0.150 0.006 0.032 0.032 0.998 -4.839  3.224
67 0.021  1.000 0.000 0.000 -2.281 0.022 0.157 0.003 0.018 0.015 0.993 -5.291  0.181
68 0.021  0.000 0.000 0.000 -1.814 0.202 0.133 0.002 0.007 0.006 0.998 -5.445  1.677
69 0.021  1.000 0.000 0.000 -2.149 0.090 0.119 0.004 0.021 0.020 0.990 -5.015  0.750
70 0.074 1.000 0.735 0.000 -0.676 0.420 0.830 0.037 0.337 0.404 0.965 -2.834  3.489
71 0.075 0.899 0.734 0.000 -0.680 0.390 0.918 0.034 0.319 0.383 0.974 -3.008  3.239
72 0.076 1.000 0.713 0.064 -0.682 0.591 0.376 0.002 0.010 0.009 1.000 -5.167 4915
73 0.076  0.499 0.735 0.000 -0.671 0.438 0.755 0.047 0.450 0.558 0.951 -2.683  3.643
74 0.076  0.899 0.714 0.065 -0.687 0.471 0.603 0.041 0.391 0.493 0.973 -3.229  3.916
75 0.077 0.102 0.734 0.000 -0.672 0.561 0.604 0.041 0.389 0.481 0.957 -2.819  4.668
76 0.077 0.502 0.714 0.065 -0.690 0.586 0.371 0.003 0.013 0.011 1.000 -5.081  4.872
7 0.077  0.000 0.733 0.000 -0.691 0.445 0.604 0.041 0.373 0.453 0.961 -2.932  3.698
78 0.078 0.102 0.712 0.066 -0.690 0.581 0.298 0.001 0.008 0.008 1.000 -5.188  4.835
79 0.078 0.000 0.713 0.065 -0.690 0.570 0.307 0.004 0.018 0.015 0.999 -5.073  4.739
80 0.081  1.000 0.577 0.333 -0.742 0.596 0.352 0.003 0.011 0.009 1.000 -5.050  4.956
81 0.081 1.000 0.542 0.000 -0.733 0.509 0.357 0.003 0.016 0.014 1.000 -5.278  4.231
82 0.082 0.898 0.541 0.000 -0.722 0.529 0.333 0.004 0.020 0.017 0.999 -5.117  4.400
83 0.082 1.000 0.515 0.047 -0.724 0.545 0.328 0.003 0.013 0.011 1.000 -5.095  4.529
84 0.082 0.501 0.580 0.334 -0.740 0.605 0.377 0.003 0.013 0.011 1.000 -5.051  5.029
85 0.082 0.900 0.515 0.047 -0.737 0.522 0.333 0.006 0.023 0.018 0.999 -4.948  4.344
86 0.083 0.498 0.542 0.000 -0.730 0.508 0.316 0.003 0.013 0.012 1.000 -5.294  4.226
87 0.083 0.000 0.580 0.333 -0.738 0.534 0.342 0.003 0.018 0.017 1.000 -5.231  4.438
88 0.083 0.499 0.515 0.048 -0.733 0.510 0.310 0.004 0.017 0.013 0.999 -5.033  4.238
89 0.083 0.106 0.580 0.334 -0.753 0.561 0.335 0.003 0.016 0.016 0.999 -5.059  4.667
90 0.084 0.100 0.542 0.000 -0.715 0.511 0.271 0.004 0.022 0.020 0.999 -5.146  4.246
91 0.084 0.000 0.542 0.000 -0.719 0.456 0.313 0.006 0.030 0.029 0.999 -4.767  3.795
92 0.084 0.108 0.515 0.047 -0.722 0.505 0.288 0.004 0.017 0.015 0.999 -5.138  4.199
93 0.085 0.000 0.515 0.047 -0.735 0.472 0.279 0.006 0.027 0.028 0.999 -5.075  3.928
94 0.085 0.904 0.582 0.333 -0.779 0.615 0.459 0.004 0.015 0.013 0.999 -4.850 5.113
95 0.086 1.000 0.371 0.243 -0.772 0.549 0.322 0.004 0.017 0.015 0.999 -4.960  4.566
96 0.086 0.899 0.371 0.243 -0.762 0.545 0.318 0.004 0.017 0.015 0.999 -5.048  4.535
97 0.086 0.899 0.214 0.627 -0.791 0.598 0.388 0.003 0.015 0.013 1.000 -4.993 4971
98 0.087 1.000 0.219 0.626 -0.800 0.618 0.439 0.005 0.020 0.016 1.000 -4.898  5.141
99 0.087 0.499 0.226 0.623 -0.794 0.583 0.342 0.016 0.060 0.048 0.998 -4.423  4.848
100 0.087 0.499 0.371 0.243 -0.772 0.523 0.294 0.006 0.028 0.023 0.999 -4.946  4.346
101 0.087  0.900 0.000 0.704 -0.809 0.585 0.379 0.006 0.027 0.023 0.999 -4.866  4.865
102 0.087 1.000 0.000 0.704 -0.800 0.598 0.384 0.003 0.017 0.020 0.999 -4.905 4.973
103 0.088 1.000 0.336 0.000 -0.812 0.478 0.297 0.002 0.008 0.008 1.000 -5.334 3971
104 0.088 0.000 0.228 0.624 -0.787 0.562 0.311 0.002 0.008 0.006 1.000 -5.114  4.674
105 0.088 0.099 0.371 0.242 -0.772 0.499 0.283 0.004 0.026 0.028 0.999 -5.017  4.150
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106 0.088 0.105 0.223 0.625 -0.786 0.564 0.319 0.008 0.032 0.027 0.999 -4.903  4.693
107 0.088 0.000 0.371 0.243 -0.775 0.479 0.297 0.006 0.033 0.036 0.999 -4.939  3.980
108 0.088 0.898 0.336 0.000 -0.826 0.442 0.311 0.005 0.024 0.024 0.999 -5.175  3.673
109 0.089 1.000 0.313 0.029 -0.834 0.407 0.345 0.004 0.022 0.022 1.000 -5.381  3.385
110 0.089 0.899 0.313 0.029 -0.829 0.436 0.311 0.008 0.035 0.029 0.999 -4.869  3.624
111 0.089  0.500 0.000 0.704 -0.799 0.556 0.364 0.004 0.018 0.016 1.000 -5.130  4.625
112 0.089  0.101 0.000 0.704 -0.798 0.547 0.338 0.001 0.010 0.010 1.000 -5.393  4.548
113 0.089 1.000 0.106 0.451 -0.797 0.511 0.349 0.003 0.016 0.015 1.000 -5.181  4.252
114 0.090 0.497 0.337 0.000 -0.804 0.470 0.265 0.008 0.063 0.073 0.997 -4.550  3.904
115 0.090 0.899 0.106 0.451 -0.792 0.522 0.320 0.004 0.017 0.014 1.000 -5.196  4.336
116 0.090 0.000 0.000 0.704 -0.806 0.533 0.337 0.003 0.016 0.014 1.000 -5.289  4.434
117 0.090 0.498 0.313 0.029 -0.815 0.414 0.321 0.005 0.032 0.038 0.998 -4.916  3.445
118 0.090 1.000 0.000 0.505 -0.822 0.553 0.303 0.007 0.041 0.039 0.998 -4.545  4.594
119 0.090 0.900 0.000 0.505 -0.809 0.511 0.310 0.003 0.014 0.012 1.000 -5.332  4.250
120 0.090 0.102 0.336 0.000 -0.808 0.432 0.265 0.004 0.019 0.016 0.999 -5.193  3.592
121 0.091 0.000 0.336 0.000 -0.807 0.423 0.265 0.010 0.039 0.032 0.999 -4.889  3.520
122 0.091 0.100 0.312 0.030 -0.804 0.437 0.254 0.008 0.030 0.025 0.999 -5.170  3.636
123 0.091  0.000 0.314 0.029 -0.804 0.436 0.249 0.007 0.025 0.020 0.999 -5.374  3.621
124 0.091 0.498 0.106 0.451 -0.791 0.521 0.296 0.002 0.014 0.014 0.999 -5.189  4.333
125 0.091  0.899 0.202 0.148 -0.853 0.451 0.264 0.004 0.014 0.011 1.000 -5.692  3.747
126 0.091  1.000 0.202 0.149 -0.862 0.478 0.279 0.021 0.188 0.218 0.979 -3.572  3.970
127 0.092 0.499 0.202 0.148 -0.845 0.432 0.269 0.006 0.046 0.057 0.998 -4.831  3.595
128 0.092 0.100 0.106 0.451 -0.798 0.512 0.269 0.003 0.014 0.012 1.000 -5.276  4.255
129 0.092 0.501 0.000 0.505 -0.804 0.506 0.266 0.010 0.048 0.043 0.998 -4.515  4.203
130 0.092 0.000 0.106 0.451 -0.793 0.522 0.252 0.004 0.016 0.013 0.999 -5.137  4.340
131 0.093 0.000 0.000 0.505 -0.812 0.470 0.292 0.002 0.012 0.010 1.000 -5.476  3.906
132 0.093 0.898 0.049 0.273 -0.862 0.460 0.267 0.004 0.019 0.017 0.999 -5.192  3.822
133 0.093 1.000 0.049 0.272 -0.864 0.469 0.262 0.003 0.014 0.012 1.000 -5.374  3.902
134 0.093 0.000 0.202 0.149 -0.826 0.427 0.248 0.006 0.028 0.024 0.999 -5.164  3.547
135 0.094 1.000 0.000 0.304 -0.902 0.430 0.261 0.014 0.068 0.071 0.996 -4.404  3.572
136 0.094 0.103 0.202 0.148 -0.832 0.433 0.248 0.005 0.023 0.021 0.999 -5.174  3.602
137 0.094 0.899 0.000 0.304 -0.890 0.421 0.268 0.010 0.047 0.049 0.998 -4.707  3.498
138 0.094 0.498 0.048 0.272 -0.866 0.447 0.247 0.002 0.010 0.010 1.000 -5.718  3.713
139 0.095 0.500 0.000 0.304 -0.862 0.462 0.253 0.008 0.054 0.061 0.997 -4.562  3.844
140 0.096 0.101 0.048 0.273 -0.855 0.435 0.237 0.003 0.021 0.019 0.999 -5.195  3.617
141 0.096 0.000 0.050 0.273 -0.856 0.427 0.237 0.005 0.021 0.019 0.999 -5.194  3.550
142 0.096 0.100 0.000 0.304 -0.855 0.453 0.227 0.005 0.024 0.025 0.999 -5.086  3.770
143 0.097 0.000 0.000 0.304 -0.845 0.461 0.285 0.005 0.046 0.054 0.998 -4.782  3.832
144 0.099 1.000 0.000 0.000 -1.222 0.333 0.180 0.001 0.006 0.005 0.999 -5.615  2.772
145 0.102  0.000 0.000 0.000 -1.114 0.353 0.173 0.001 0.007 0.006 0.999 -5.518  2.935
146 0.102  0.000 0.000 0.000 -1.129 0.427 0.112 0.006 0.046 0.041 0.994 -4.488  3.547
147 0.108 0.932 0.000 0.505 -0.881 0.562 0.361 0.005 0.021 0.017 0.999 -5.032  4.669
148 0.111  0.085 0.202 0.148 -0.902 0.467 0.212 0.007 0.029 0.023 0.999 -5.087  3.885
149 0.151  0.500 0.733 0.000 -1.060 0.653 0.851 0.005 0.043 0.039 0.993 -3.471  5.425
150 0.154 0.101 0.734 0.000 -1.079 0.678 0.658 0.005 0.021 0.019 0.999 -4.311  5.634
151 0.154 0.000 0.734 0.000 -1.060 0.677 0.637 0.006 0.023 0.018 0.999 -4.473  5.627
152 0.156 1.000 0.581 0.334 -1.201 0.701 1.072 0.001 0.004 0.003 0.999 -4.037  5.825
153 0.157  1.000 0.543 0.000 -1.139 0.460 1.045 0.010 0.044 0.035 0.999 -4.428  3.821
154 0.157 0.899 0.580 0.333 -1.185 0.694 0.955 0.002 0.007 0.006 0.999 -4.123  5.771
155 0.158 0.899 0.542 0.000 -1.127 0.564 0.927 0.006 0.042 0.037 0.999 -4.183  4.687
156 0.161 0.499 0.581 0.335 -1.170 0.711 0.791 0.003 0.017 0.016 0.999 -4.216 5911
157 0.161 0.499 0.543 0.000 -1.128 0.646 0.692 0.004 0.017 0.015 0.999 -4.323  5.372
158 0.164 0.100 0.581 0.333 -1.141 0.681 0.660 0.005 0.017 0.014 0.999 -4.515  5.661
159 0.165 1.000 0.372 0.244 -1.211 0.632 0.819 0.007 0.033 0.030 0.999 -4.138  5.254
160 0.165 1.000 0.000 0.305 -1.220 0.580 0.559 0.004 0.014 0.012 0.999 -4.533  4.820
161 0.165 0.101 0.543 0.000 -1.103 0.622 0.597 0.003 0.013 0.010 0.999 -4.580  5.173
162 0.166  0.000 0.580 0.333 -1.157 0.640 0.661 0.011 0.048 0.048 0.999 -4.308  5.321
163 0.166 0.896 0.372 0.244 -1.206 0.638 0.800 0.007 0.024 0.020 0.999 -4.188  5.307
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164 0.167  0.000 0.542 0.000 -1.102 0.623 0.563 0.004 0.021 0.021 0.999 -4.459  5.183
165 0.168 1.000 0.000 0.704 -1.284 0.696 0.949 0.013 0.044 0.033 0.999 -4.209  5.787
166 0.169 0.899 0.000 0.704 -1.275 0.708 0.882 0.005 0.026 0.025 0.999 -4.202  5.886
167 0.169 1.000 0.337 0.000 -1.190 0.589 0.670 0.003 0.012 0.012 0.999 -4.332  4.897
168 0.170  1.000 0.000 0.305 -1.224 0.582 0.608 0.003 0.009 0.007 0.999 -4.601  4.841
169 0.170 0.498 0.372 0.243 -1.178 0.637 0.652 0.001 0.008 0.008 0.999 -4.401  5.297
170 0.171  0.897 0.336 0.000 -1.184 0.596 0.634 0.002 0.006 0.005 0.999 -4.491  4.957
171 0.173  0.498 0.000 0.704 -1.257 0.730 0.715 0.007 0.027 0.023 0.999 -4.344  6.067
172 0.173  1.000 0.000 0.505 -1.235 0.641 0.750 0.002 0.008 0.006 0.999 -4.356  5.329
173 0.174 1.000 0.204 0.149 -1.224 0.576 0.650 0.005 0.021 0.017 0.999 -4.395  4.790
174 0.174 0.899 0.205 0.150 -1.241 0.547 0.622 0.015 0.055 0.043 0.998 -4.235  4.552
175 0.175 0.500 0.337 0.000 -1.184 0.575 0.566 0.003 0.011 0.010 0.999 -4.675  4.784
176 0.175 0.000 0.375 0.243 -1.160 0.638 0.530 0.003 0.011 0.008 0.999 -4.701  5.302
177 0.175 0.100 0.372 0.243 -1.167 0.662 0.540 0.004 0.016 0.014 0.999 -4.474  5.506
178 0.177  0.100 0.000 0.704 -1.244 0.676 0.622 0.002 0.008 0.006 0.999 -4.592  5.619
179 0.177 0.898 0.000 0.506 -1.295 0.680 0.780 0.006 0.024 0.020 0.999 -4.264  5.652
180 0.178 0.000 0.000 0.704 -1.225 0.674 0.606 0.009 0.041 0.041 0.999 -4.413  5.606
181 0.178 0.101 0.337 0.000 -1.154 0.569 0.475 0.001 0.004 0.003 1.000 -4.889  4.729
182 0.179  0.000 0.336 0.000 -1.166 0.548 0.478 0.007 0.028 0.022 0.999 -4.838  4.560
183 0.180 0.501 0.203 0.149 -1.201 0.587 0.531 0.008 0.025 0.018 0.999 -4.775  4.881
184 0.180 0.495 0.000 0.504 -1.241 0.654 0.619 0.004 0.015 0.013 0.999 -4.453  5.437
185 0.183 0.000 0.000 0.501 -1.215 0.602 0.529 0.012 0.058 0.050 0.998 -4.295  5.002
186 0.183 0.102 0.204 0.149 -1.179 0.599 0.438 0.003 0.014 0.012 1.000 -5.056  4.984
187 0.184 0.000 0.204 0.149 -1.181 0.592 0.425 0.003 0.011 0.008 0.999 -4.800 4.924
188 0.185 0.499 0.000 0.305 -1.234 0.572 0.493 0.003 0.011 0.009 0.999 -4.822 4.754
189 0.185 0.101 0.000 0.505 -1.238 0.633 0.522 0.008 0.031 0.025 0.999 -4.455  5.264
190 0.188  1.000 0.000 0.000 -1.311 0.530 0.368 0.003 0.012 0.009 0.999 -4.932  4.404
191 0.189 0.103 0.000 0.305 -1.221 0.558 0.440 0.003 0.011 0.009 0.999 -4.891  4.635
192 0.189  0.000 0.000 0.305 -1.220 0.562 0.417 0.005 0.018 0.015 0.999 -4.908  4.669
193 0.199  0.000 0.000 0.000 -1.262 0.504 0.310 0.002 0.008 0.007 1.000 -5.411  4.191
194 0.320 0.899 0.315 0.032 -1.813 2.502 -0.373 0.006 0.071 0.105 0.968 -2.368 20.805
195 0.333 0.498 0.336 0.000 -1.931 1.523 0.851 0.006 0.044 0.037 0.999 -4.052 12.665
196 0.334 0.500 0.314 0.031 -1.918 1.270 1.084 0.004 0.019 0.019 1.000 -4.801 10.561
197 0.335 0.896 0.045 0.273 -1.906 1.351 1.046 0.005 0.027 0.031 1.000 -4.652 11.237
198 0.341  0.499 0.202 0.148 -1.985 0.800 1.722 0.061 0.726 1.093 0.987 -2.936  6.651
199 0.346  0.099 0.338 0.000 -1.855 1.115 0.895 0.002 0.010 0.012 1.000 -4.633  9.269
200 0.347  0.495 0.059 0.272 -1.982 1.308 0.922 0.005 0.051 0.076 1.000 -4.943 10.874
201 0.350 0.000 0.337 0.000 -1.838 1.104 0.855 0.002 0.022 0.032 1.000 -4.664  9.178
202 0.355 0.100 0.201 0.150 -1.897 1.118 0.840 0.002 0.022 0.026 0.999 -4.402  9.299
203 0.356  0.482 0.000 0.305 -1.986 1.340 0.883 0.003 0.017 0.017 1.000 -4.758 11.137
204 0.359  0.000 0.203 0.150 -1.871 1.088 0.828 0.001 0.009 0.011 0.999 -4.287  9.046
205 0.359  0.000 0.313 0.032 -1.796 1.019 0.801 0.003 0.013 0.012 0.999 -4.299  8.475
206 0.362 0.100 0.048 0.272 -1.913 1.081 0.831 0.004 0.029 0.032 1.000 -4.633  8.991
207 0.366  0.000 0.048 0.272 -1.906 1.039 0.818 0.004 0.025 0.029 0.999 -4.359  8.641
208 0.367  0.000 0.000 0.304 -1.914 1.026 0.839 0.005 0.044 0.054 0.999 -4.304  8.534
209 0.373 0.096 0.000 0.305 -1.937 1.107 0.813 0.004 0.017 0.018 1.000 -4.896  9.207
210 0.381  0.000 0.000 0.000 -1.924 0.884 0.745 0.008 0.045 0.051 0.999 -4.310  7.350
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S5 Feature correlation
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Figure S12: (a,b): Feature correlations and Feature importance for features before the Arrhenius fit,
using each individual measured data point for the calculation. Due to different numbers of measure-
ments for each electrolyte formulation, caused by different measurement uncertainties for different
electrolyte formulations, every electrolyte formulation is weighted differently. (c,d): Feature corre-
lations and Feature importance for features after the Arrhenius fit, removing data points with an
insufficient Arrhenius fit and using averaged data for each electrolyte composition. Each electrolyte
formulation is weighted equally. The correlations are calculated using the Pandas library with the
Pearson method and the Feature importance is calculated by a simple Random Forest model as im-

plemented in Scikit-Learn.
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S6 Feature space coverage
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Figure S13: Pairplots to illustrate feature space coverage of all features used for the predictions of
Arrhenius objectives Sy, S1 and S5. The upper diagonal shows explicit data points, and the lower
diagonal shows the density of data.
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S7 Model description

This section aims to describe the models used in our paper briefly, focussing on hyperparameter
settings. For a deeper understanding of each model, we refer to the documentation of scikit-learn?.
For all models, we use a random seed of 42 to ensure our results are reproducible.

S7.1 Random Forest (RF)

The Random Forest (RF)!® model is based on an ensemble of decision trees. We use the standard
implementation of scikit-learns RandomForestRegressor with its default hyperparameters. The most
important ones are the number of 100 decision trees, a number of 2 samples per node to split it further
and a minimum number of 1 sample per leaf. For building the decision trees, bootstrapped samples
are used.

S7.2 Optimized Linear Regression (LR opt)

The optimized Linear Regression model (LR opt) is constructed from a polynomial of degree 3. The
polynomial includes all possible combinations of features up to this degree.

p= Z a; T; —+ Z aijxixj + Z aijkxix]—xk (84)
i ij ijk
with 4, 4,k € [zLisalt, TLiPF; TEC, xpc| and corresponding weights a. We then remove polynomials,

which do not increase the training error, when removed. Therefore, we calculate the training error n?
(MSE) for infinite training size Ni,¢, by performing a linear regression on the function

1
n2:m~ﬁ+b (S5)

with the number of training data N, slope m and intercept b, which corresponds directly to n? ;. The
detailed method is described in our previous work®.

We perform the regression with 20 different values for IV with each trained excluding one polynomial
from the total set. The polynomial whose elimination results in the minimal estimated error for
Nins. Recursively, this process is repeated until removing any polynomial results in an increased 72
larger than 10 % from the best error Ni,; seen so far in the whole process. We start with removing
polynomials of higher degrees and then proceed with polynomials of lower degrees. Below are the
tables of polynomials considered for the optimized model. It is remarkable, that only a few polynomials
include zpipr,, indicating that it is less important. For S; it is only one single polynomial.
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Table S3: Polynomials in Optimized LR model for Sp.

poly.index Zrisat ZLiPF, ZEC ZPC coefs std rel_std
* 0 0 0 0 -0.875023 0.002235 0.002554
0 1 0 0 0 12.218531 0.212923 0.017426
1 0 1 0 0 -0.112419 0.005834 0.051893
2 0 0 1 0 6.734287 0.064513 0.009580
3 0 0 0 1 7.185093 0.069567 0.009682
4 2 0 0 0 -49.873777 1.059288 0.021239
5 1 1 0 0 -0.389274 0.017569 0.045132
6 1 0 1 0 -41.903746 0.505475 0.012063
7 1 0 0 1 -43.582825 0.532575 0.012220
9 0 1 1 0 0.198567 0.008227 0.041433
10 0 1 0 1 0.168711 0.008414 0.049870
11 0 0 2 0 -8.255223 0.113815 0.013787
12 0 0 1 1 -17.088289 0.197576 0.011562
13 0 0 0 2 -9.980385 0.128979 0.012923
14 3 0 0 0  49.882205 1.209635 0.024250
16 2 0 1 0 59.585975 1.254787 0.021058
17 2 0 0 1 59.743359 1.294362 0.021665
21 1 0 2 0 23.692574 0.331104 0.013975
22 1 0 1 1 46.543972 0.559897 0.012029
23 1 0 0 2 27.588520 0.373083 0.013523
30 0 0 3 0 3.381360 0.068299 0.020199
31 0 0 2 1 9.256496 0.151613 0.016379
32 0 0 1 2 11.314440 0.167111 0.014770
33 0 0 0 3 4.500586  0.079047 0.017564
Table S4: Polynomials in Optimized LR model for S;.
poly.index Zrisat ZLiPF, ZEC ZPC coefs std rel_std
* 0 0 0 0 0.534251 0.001053 0.001971
2 0 0 1 0 1.146745 0.024096 0.021013
3 0 0 0 1 0.393108 0.003765 0.009577
4 2 0 0 0  5.081773 0.041250 0.008117
11 0 0 2 0 -2.958723 0.084152 0.028442
12 0 0 1 1 -1.398687 0.029247 0.020910
15 2 1 0 0 2.778388 0.112186 0.040378
21 1 0 2 0 1.936693 0.049419 0.025517
30 0 0 3 0 2.248034 0.075330 0.033509
31 0 0 2 1 2327605 0.055255 0.023739
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Table S5: Polynomials in Optimized LR model for Ss.

poly.index Zrisat ZLiPF, ZEC ZPC coefs std rel_std
* 0 0 0 0 0.397774 0.001366 0.003435
0 1 0 0 0 -4.112804 0.071528 0.017391
1 0 1 0 0 -0.138173 0.004075 0.029494
3 0 0 0 1 0.081101 0.006142 0.075733
4 2 0 0 0 37.620234 0.497493 0.013224
5 1 1 0 0 1.780458 0.039904 0.022412
7 1 0 0 1 1.301105 0.043369 0.033332
9 0 1 1 0 0.285936  0.006658 0.023285
10 0 1 0 1 0.142192 0.006149 0.043246
11 0 0 2 0 0.736755 0.005841 0.007928
12 0 0 1 1 -3.034302 0.034587 0.011399
14 3 0 0 0 -63.381723 0.907281 0.014315
22 1 0 1 1 13.287443 0.183829 0.013835
32 0 0 1 2 3.235468 0.054295 0.016781

S7.3 Gaussian Process Regression (GPR)

For Gaussian Process Regression'” !, we employ different kernels to test which works best with the

given data. The hyperparameters of each kernel (typically a length scale) are optimized automatically
by scikit-learn when fitting it to the data within the given boundary (10~°, 10%). If available, we use
the isotropic kernel (one length scale for all dimensions) and the anisotropic kernel (one length scale
per dimension).

S7.3.1 Radial basis function kernel (A.RBF and I.RBF)

The Radial Basis Function (RBF) kernel (sometimes also Squared Exponential or Gaussian kernel) 17:24

is given as
|7 — ;|
k(z;,z;) = exp (—2123 (S6)
with the length scale I. |z; — x| denotes the euclidean distance.

S7.3.2 Matérn kernel (A.M and I.M)

The Matern kernel'7?® is given as

k(i 25) = ﬁ (*/127”|x - xj|> K, (“?u - xj|> (s7)

with the gamma function I' and a Bessel function K. v is a parameter that can be chosen. We chose
v = 1.5 for our analysis, which results in a one times differentiable function. [ is again a length scale.

S7.3.3 Rational Quadratic kernel (I.RQ)
The Rational Quadratic (RQ) kernel'-24 is given as

i —x\ "
k(xi,xz;) = <1 + s = 25| 2al2j|> (S8)

with the length scale [ and a mixture parameter a. Both are optimized during the fitting process.
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S7.4 Neural network (NN)

Based on a more detailed analysis of different Neural Network 2% models (section S9) we have chosen
one specific model for further investigations. The chosen model has two hidden layers with 16 neurons
per hidden layer. We use the Rectified Linear Unit (ReLU)?® activation function for the output layer
and hyperbolic tangent activation functions for hidden layers. We use a constant learning rate of
0.001, a value of 0.008 for L2 regularization, and the L-BFGS?2” solver, which is recommended for
small datasets. The number of maximum iterations is set to 4000. For other parameters, we adopt the
defaults from scikit-learn.

S7.5 Optimized neural network (NN opt)

To automatically determine hyperparameters for NN models, we employ Bayesian hyperparameter
Optimization using the GPyOpt? library. It automatically varies the network architecture up to
4 hidden neurons with up to 20 neurons. Different activation functions for the hidden layers can
be evaluated, choosing from ReLU?25, hyperbolic tangent?®, logistic and identity. The value for L2
regularization can be chosen from the interval (0.0001, 0.01). The batch size is varied between 10 and
200 in steps of 5. The solver can be chosen from 'L-BFGS’?7, ’Adam’?? and stochastic gradient descent
with a number of maximum iterations between 500 and 5000, varied in steps of 500. Other parameters
are not varied and adopted from scikit-learn’s default. We search for optimized hyperparameters for a
maximum of 300 seconds or 100 iterations, whatever condition is first met. Depending on the random
seed, each time other optimized parameters are found. For a random seed of 42 we find the optimized
hyperparameters listed below and used for further analysis.

Table S6: Optimized hyperparameters for model to predict Sy, S1 and Ss.

Hyperparameter So S So
Neurons in hidden layer 1 13 8 14
Neurons in hidden layer 2 14 8 9
Neurons in hidden layer 3 16 3 12
Neurons in hidden layer 4 7 15 11
Activation function hyperbolic tangent ReLU ReLU
L2 regularization 0.0068 0.01 0.01
Batch size 10 10 10
Solver L-BFGS Adam Adam
Maximum number of iterations 500 4500 3000
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S8 Train-Test split

To compare several models and ensure reproducibility we ensure that for a similar random state each
time equal data is used for the training and the test set. With our random state of 42, we obtain the
following split of data points listed below. The indices of the data points correspond to the Arrhenius
fits that are listed in Table S2.

Table S7: Indices of electrolyte formulations that were used for training and test set of the final model.
The formulations were chosen randomly.

Train Test (Validation holdout)

0,1,2,3,4,5,6,7,8, 10, 11, 12, 13, 14, 16, 17, 9, 15, 18, 30, 45, 60, 73, 75, 84, 93, 126, 136, 155,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 165, 168, 172, 182, 187, 197, 200, 208
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46,

47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,

61, 62, 63, 64, 65, 66, 67, 63, 69, 70, T1, 72, 74,

76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89,

90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102,

103, 104, 105, 106, 107, 108, 109, 110, 111, 112

113, 114, 115, 116, 117, 118, 119, 120, 121, 122,

123, 124, 125, 127, 128, 129, 130, 131, 132, 133

134, 135, 137, 138, 139, 140, 141, 142, 143, 144,

145, 146, 147, 148, 149, 150, 151, 152, 153, 154,

156, 157, 158, 159, 160, 161, 162, 163, 164, 166,

167, 169, 170, 171, 173, 174, 175, 176, 177, 178

179, 180, 181, 183, 184, 185, 186, 188, 189, 190,

191, 192, 193, 195, 196, 198, 199, 201, 202, 203

204, 205, 206, 207, 209, 210
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S9 Systematic Study of Neural networks

From all tested models Neural Networks offer the largest variety in hyperparameters. Often expert
knowledge about the Neural Network itself and the dataset are required in order to achieve high
accuracy. This can be circumvented by Bayesian hyperparameter optimization, leading to the NN opt
model. However, we would like to understand the effect of different hyperparameters on the model,
especially the Neural Network architecture in more detail. Therefore, we systematically investigate the
effect of choosing different numbers of neurons per hidden layer. For simplicity we restrict ourselves
to one hidden layer for this kind of analysis. Furthermore, we compare the ReLU and hyperbolic
tangent activation functions. We calculate the averaged MSE from leave-one-out CV. As can be seen
in Figure S14b and ¢ both activation functions perform similarly for S; and S5, nearly regardless
of the number of neurons per hidden layer. Only for less than 10 neurons models might perform
worse. For S in Figure S14 we observe the trend that the hyperbolic tangent activation function
gives more stable results for a number of neurons below 20. For more neurons the MSE increases
slightly. However, there is one exception for 13 neurons per layer, where the hyperbolic tangent (tanh)
activation function performs much worse. So far, this is not understood. For the ReLU activation
function the MSE decreases, when increasing the number of neurons up to 20. Except for 13 neurons,
the MSE for the ReLU activation function is larger than for the hyperbolic tangent. Starting from
20 neurons both perform similar. From this analysis we can identify several good architectures and
decide to continue with 16 neurons per layer for all objectives .S;, as this seems to be the architecture
for the hyperbolic tangent activation function with the lowest MSE for Sy.
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Figure S14: Dependence of MSE of network architecture. The number of nodes is varied for a NN
with 1 hidden layer. The transparent areas indicate standard errors.

In Figure S15 we keep the number of neurons per layer constant, but vary the number of hidden
layers from 1 to 4. For Sy and ReLU three hidden layers give rise to the lowest MSE, but within
standard errors (indicated by black bars) all models are similar. The similarity is even more pronounced
for the hyperbolic tangent activation function. For S7 and S5 within standard errors all architectures

are similar. However, for the hyperbolic tangent activation function and S; objective two hidden layers
has the best accuracy.
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Figure S15: Dependence of MSE of network architecture. The number of hidden layers is varied with

16 neurons per hidden layer. Also, the two activation functions ReLLU and hyperbolic tangent are
compared.
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Finally, we investigate in Figure S16 if the performance of NN models with 16 neurons per layer
and different numbers of layers depends on the number of training data. Here, we observe that for
a given number of training data all architectures perform similarly well within standard errors. A
similarity is observed when varying the number of neurons in one hidden layer.
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Figure S16: Datasize performance of NN with different numbers of hidden layers and 16 neurons per

hidden layer. The black line represents the experimental variance of the S;. The error bars represent
standard errors.

As a final note we should try to avoid too large Neural Network architectures to reduce the number
of parameters and thus prevent overfitting. However, when choosing the Neural Network architecture
too small it might be possible that the MSE increases.
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S10 Model timings
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Figure S17: Average MSE from leave-one-out CV plotted against the average time to fit a model once
for all models.

Beyond accuracy, also the computational cost to fit a model is of relevance. In general, for small
datasets, this does not matter too much. However, for larger datasets it is necessary to have efficient
models in both, accuracy and time needed to fit a model. Therefore, to find the optimal trade-off, we
can plot the MSE of each S; vs. the average time needed to fit a model as shown in Figure S17. The
MSE and fitting times are calculated during the leave-one-out CV. We highlight that our models can
be fitted on commonly available laptops or desktop computers and do not need any specific hardware.
The analysis discussed in this paper and the measured timings in Figure S17 were done on an AMD
Ryzen 7 4800H CPU with 8 cores (16 threads) and a maximum clock rate of 4.2 GHz.

The cheapest model is always LR opt needing less than 0.01 s. However, especially for Sy it is one
of the least accurate models. There the NN and NN opt models are superior in terms of accuracy and
compared to all other models except LR opt also in fitting time (0.4 and 0.7 s). Thus the NN models
are the best option for fitting Sy. GPR models are in general more expensive, where the exact fitting
time depends on the chosen kernel.

However, NN models might be also more expensive, depending on the maximum number of itera-
tions and network architecture. However, the fitting time only scales with N, whereas it scales with
N? for GPR models.

For S; and Sy A.M has the lowest MSE, however, it is also expensive in terms of computation
time. Here the NN model is superior in terms of fitting time (0.7 s for S and 0.6 s for S) with still
acceptable MSEs. The NN opt model needs more time to fit, which is explained by more hidden layers
and a higher number of maximum iterations. Besides NN the I.M model offers a good balance between
fitting time (0.5 s for S and 0.7 s for S3) and MSE.

Interestingly, the preferable models with respect to fitting times are exactly the models we identified
for further analysis in our paper only based on the MSE and physical reasonability.
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Finally, when increasing the size of the dataset and thus also computational costs, it is possible
to switch from leave-one-out CV to K-fold CV, lowering the computational costs to obtain statistics
by simultaneously also losing some statistical significance. However, this is a common approach in
the ML community. This would not reduce individual fitting times of models, but the total time to
calculate CV scores.
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S11 Model validation

To validate our model, we use different representations. First, we start by comparing the Mean
Squared Errors (MSEs) calculated from the leave-one-out CV to the MSEs obtained for the test set.
In Figure S18, we also compare the MSEs calculated from leave-one-out CV with the MSEs calculated
from a 5-fold CV. In general, both are in good agreement, however, the MSEs from leave-one-out CV
are mostly lower because we used more data to train a model, which increases the models’ performance.
The MSEs for the test set are also in good agreement within the standard errors of the MSEs calculated
from CV.
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Figure S18: Comparison of the MSEs for individual S;, calculated from leave-one-out CV, 5-fold CV
and calculated for the test set. The black bars correspond to standard errors.

Second, we can calculate the model’s prediction for a certain electrolyte composition for every
measured temperature. If there is a measurement for this specific composition, we can compare both.
Figure S19a and b show typical Arrhenius fits and model predictions for the Arrhenius fits for electrolyte
compositions within the training set, which are expected to be fitted well. Figure S19¢ and d show
the predicted Arrhenius fit for a composition from the test set (c¢), which the models have never seen
before. The measurement data, the experimental Arrhenius fit and the predicted Arrhenius fits of all
models agree well for this specific composition. We observe similar good predictions for the electrolyte
composition which was filtered out (d) due to a large Mean Absolute Error for the Arrhenius fit, which
is caused by the measurement at —30°C. Here, the model predicts different behavior. Yet, it is not clear
whether the measurements are incorrect or there is an interesting behavior for this specific electrolyte
composition, deviating from normal Arrhenius behavior.
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Figure S19: Prediction of Arrhenius fits. The black open circles represent the mean of the individual
measurements with their standard deviation as error bars. The Arrhenius and model predictions are
displayed together with their uncertainties. For each subplot it is given, if the electrolyte composition
belongs to the training or test set or was filtered out before the train-test-split.

In Figure S20 we plot for each individual S; the predicted value against the true value for each
electrolyte composition in the training set (black circles) and in the test set (red circles). We show
these plots for all models that are used to make predictions (see e.g. Figure 6 in the main paper).
Furthermore, we calculate the R2-score (a score of 1 is a perfect fit) for the validation set. From
these plots we observe that the Sy (all R2-scores > 0.98) objective function is easier to fit than the S;
objective function, which is easier to fit than the Sy objective function. This is indicated by generally
decreasing R2-scores from Sy to So. Only in the NN opt model the R2-scores for S; and S, are similar,
which might be related to statistical reasons and separate optimization for each objective. Because
the R2-scores are only calculated for one test set without another level of CV they can not be used to
compare models, but indicate that all models are trained well without too much overfitting. A general
trend is also that lower values of S; in the test set are fitted with a lower absolute error than larger
values, which can be especially seen for S7 and Ss.
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(¢c) GPR with Isotropic Matern kernel.

S31

S2: r?=0.902
‘ T T rd ) T T Ll
Yo o /
gl gl 7e O °//
L / EAC IO I T
E s E E £
a P o.o 5h i o 05k
_2 "./l, 1 n P,‘ 1 1 1 1
-2 -1 0 1 05 1.0 15
SO truth S1 truth S2 truth
(a) Random Forest.
S0: r2=0.996 S1:r2=0.893 S2:r2=0.783
T T T 15.! T ,‘. T T l/‘
ko] / o ° ;‘ ko] 1.51 ’ // i
8 -1} { 810} i I "
5 V4 g v 5 1.0 ¢ .
5 . 5 5 .
o // — 0.5} / 1T o 0.5F -
2} / n »n U.
_2. ¢ 4 - .x.
@° ., 1 | 2P 1 1 1 1
-2 -1 0 1 05 1.0 15
SO truth S1 truth S2 truth
(b) GPR with Anisotropic Matern kernel.
S0: r2=0.994 S1:r2=0.915 S2:r2=0.895
T l/‘ T T /“/'. 1.5- T T //l/ .-
Re) o . ° Lo
! | 10 1 Sl ¢
E v E ’ g
o , 20.5f / 1 S (1
3 / 5 ~N05F & i
(7)) (7)) wn
_2 5 (! - -’} %
, L L L L L L
-2 -1 0 1 0.5 1.0 15
SO truth S1 truth S2 truth




S0: r2=0.986 S1:r2=0.959 S2: r2=0.851

o ' o Jab o >,
< / °
g / 31.0r Mo 81.0f £8 ]
S _1} { B / K *9.
8 y 4 3 8 Vs
> o - . 20.5F fa% -
3 s 5 0.51 1 8 g%
_2-..[ 1 n p£e ’A. 1 1 1 1
-2 -1 0 1 05 1.0 15
SO truth S1 truth S2 truth

(d) Optimized Linear Regression.
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(f) Optimized Neural Network.

Figure S20: R2 score of individual Sy, S1 and Ss, for similar models as in Figure 5 in the main paper.

Besides R2-scores for individual S; we can also calculate the R2-score for the back-transformed
IL:;“ by showing also the prediction versus the true value in Figure S21 for similar models as
in Figure S20. For all models, we observe a R2-score in the test set larger than 0.99 indicating
that the models are fitted well. The plots for Random Forest, Optimized Neural Network and the
Optimized Linear Regression also show some difficult to fit electrolyte compositions around log armasﬁu ~
2, indicated by small deviations from the diagonal. This can not be seen for other models.
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Figure S21: R2-scores of the ionic conductivity for chosen models.
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S12 Datasize Performance
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Figure S22: Datasize performance plots for Sy, S1 and S3. The straight line represents the MSE in the
test set and the dashed line is the MSE in the train set. The black line represents the mean standard
deviations of the S; from the randomized 200 Arrhenius fits for each composition. The error bars
represent standard errors across randomized training samples.

The size of the training dataset can affect the models’ performance significantly. It is intuitively clear
that models with a larger number of parameters, like NN, need more data for training than models with
only a few parameters like .M or LR opt. Figure S22 shows the averaged MSE over 100 repetitions
in the test set (straight line) and training set (dashed line) as a function of the number of randomly
picked data points for training the objectives Sy (a), S1 (b) and Sa (c).

The largest dependence on the number of data points can be observed for the Sy objective. For
up to 100 data points, all models perform similarly in terms of the MSE of the test set, except for 22
data points, where the LR opt model performs worse. However, when increasing the number of data
points in the training set, the NN model profits the most, whereas there is only minor improvement
for the LR opt and I.M models. For more than 100 data points MSE in train and test set approach
each other, indicating that the LR opt model would not benefit significantly from even more training
data. For the NN model, the MSE in the train set is stable for a various range of training set sizes,
approaching 3.0 - 1073 for 171 data points. However, we do not expect that the NN model hits
experimental variance (black line) which is 4.4 - 107>, when adding more data, highlighting the very
high experimental accuracy.

For S; and Sy all three models perform roughly similarly in terms of MSE of the test set for any
given number of training data larger than approximately 100. For both, S; and Ss, we observe that
the MSE in the test set is approximately one order of magnitude larger than the MSE in the training
set, which approaches the experimental variance of 1.6 - 1073 for S; and 1.8 - 1073 for Ss, respectively.

That the experimental variance can only be achieved for the S; and Sy and not for Sy objective
reflects on the one hand a higher precision in measuring Sy experimentally and on the other hand the
more complicated dependencies of Sy on the composition. Although Sy is mainly determined by the
salt concentration, the other components play also a minor and more subtle role, which needs to be
understood in more detail. This was already observed in our previous work®, where a polynomial of
third order was needed to fit 5§, whereas a polynomial of the second and first order, respectively, were
sufficient to fit S; and Ss, respectively. To sum this up, already a few data points are enough to fit
meaningful models for S; and Ss with experimental accuracy but more data is needed to fit models
for Sy. Also, our models would benefit from more data.
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S13 Model predictions of individual Sy, S; and S5

S13.1 1D slices

I I I I— LR oplt 150-.— LRoplt I I " I— LRoplt I I I
— M — M — M
-0.50f — NN 1.25F — NN 1 100w )
-1.00} 1.00¢ 1 o.sof ]
o — o~
%) W0 0.75F 10
150k 0.60F 1
0.50F 1
0.40f 1
-2.00} 0.25F 1
00 01 02 03 04 00 01 02 03 04 00 01 02 03 04
XLisalt XLisalt XLisalt
(a) TLiSalt- Varied, l'LiPFSZO, mEc=0.56, ZCPCZO.
| ' ' - LRoplt ' ' ' - LR oplt 0.60'I ' ' - LRop;
— M — M — M
-0.60F — w1 o050t — NN ] — NN
0.50F 1
-0.65F ]
N e i I © | _
onl e |
0.401 1
0.30f 1
-0.75F ]
. . . . . 0.35E. . . . . . . . . .
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
XLiPFg XLiPFg XLiPFg
(b) wLisaltIO.OTY, mLipFG: varied, IECZO.E)G, xpc:O.
-0.40r™ LR opt  LRopt LR opt
—_ opl —_— op — op
— M — M 1.00F — \m )
-0.60F — NN 1 0.80F — NN 1 —— NN
0.80F 1
-0.80F E
. - 0.60f 1 ~0.60F 1
¥ 1,00t {” N
0.40F E
-1.20F 4 0.40t ]
0.20f 1
-1.40F -
, , , . | 020f, , . . .1 0.00k, , . . e
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 .00
XEC XEC XEC
(C) xLiSalt:0~0777 CULiPFG =0, TEC: Varied, CL‘chO.
—— LR opt —— LR opt —— LR opt
1.50F — 1M | 080y 1 1.20F— 1™
— NN — NN — NN
1.00f {1 070r 1 1.00f
o 0.50F 1 .0.60f 1 ., 0.80}
%) %2} n
0.00f 1 os50b | 0.60f
K 3 1 0.40f
0.50 0.40t 1
-1.00F 1 0.20f
. . \ . 0.30F, . . \ ] . \ . \ .
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 .00
Xpc Xpc Xpc

(d) TLisat:=0.077, zLipr, =0, TECc=56, Tpc: varied.
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Figure S23: Prediction of Sy, S1 and S for different physical reasonable models (a~d) and non-physical
models (e). Similar features are varied and fixed as in Figure 6 in the main article.

Corresponding to Figure 6 in the main part of the article, we can also plot predictions for individual
S; instead of back-transformed ionic conductivity (Figure S23). This provides deeper insights into the
models and highlights differences between models in a more detailed way. In general, we observe that
the NN and I.M models are similar within uncertainties, whereas the LR opt model deviates mainly for
varying rpc. However, for xpc < 0.5 where measurement data is available under the condition of fixed
features, the LR opt model also performs similar. It is worth highlighting the predictions of Sy for
varying Xpsait- Here we observe a narrow window in which all models predict S; to be minimal, which
is around 0.1, corresponding to the area in Which we observe the maximum in ¢. Finally, in agreement
with that bad predictive capability of log - for the RF model all objectives S; are predicted with
large nonphysmal ﬂuctuatlons These ﬂuctuatlons are not so pronounced for the A.M model when only
. However, the individual predictions of S; reveal large fluctuations
especially for S; and So renderlng thls model as not usable for predictions.
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S13.2 Uncertainties of S;
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Figure S24: Comparison of standard deviations for experimental Arrhenius fit and uncertainties in
the prediction of Sy, S; and S3. The gray line shows the difference between the S; of the electrolyte
composition indicated by index and the nearest experimentally measured neighboring electrolyte com-
position in feature space, using euclidean distance.

In Figure S24 we compare the predicted uncertainties of the Arrhenius objectives S; with the exper-
imentally measured standard deviations. We observe that the uncertainties for all models are nearly
constant. A key distinction here is the difference in uncertainty estimation method for GPR models
(M) and models using the MAPIE? jackknife+-after-bootstrapping algorithm?%23 (LR opt, NN).
Gaussian Process Regressors inherently can return a model prediction distribution®’. For the MAPIE
models there is a baseline minimum uncertainty defined by the conformity score of the models (this
scales with the bootstrapped models’ prediction accuracy). This is clearly reflected by the higher
baseline uncertainty of the LR opt model for Sy predictions (see also the higher Sy MSE for LR
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opt compared to NN in Figure S18a). The second component of the MAPIE uncertainty estimation
approach used by LECA is the variation in the distribution of the bootstrapped model predictions.
The spikes in the uncertainty estimation for the NN model tend correspond to the largest differences
in S; values to neighboring compositions, which makes intuitive sense as these would be the data
whose inclusion or exclusion in training the bootstrapped models would lead to the largest deviations
in model predictions. None of the methods consistently match the magnitude of the highest experi-
mental uncertainty values, but both GPR and MAPIE show some sensitivity to the especially large
outlier uncertainty of measurement 198 (see Table S2). On the other hand, both approaches appear
to reasonably approach the correct magnitude for a baseline uncertainty, and the estimations err on
the side of slightly overestimating the uncertainty.

S13.3 Difficult to predict electrolyte compositions
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Figure S25: MAE in prediction of Sy, S1 and S3 of NN model for leave one out CV. This may help to
indicate which data is difficult to fit when every electrolyte formulation except the one with the index
is included.

Besides uncertainties, the mean absolute error between prediction and true value of any S; can be used
as an indicator for difficult to fit electrolyte compositions (Figure S25. It is strongly correlated to the
analysis above, but is much more simple. To identify difficult to predict electrolyte compositions, we
set an arbitrary threshold of 0.2 for predictions of the NN model. If any MAE of the S; for a specific
electrolyte composition exceeds this threshold, we print it out. The largest MAEs are observed for
S5 and smaller MAEs for Sy and S7. In total, we find 14 compositions. Nearly for all electrolyte
compositions one or more features are close to the minimum or maximum value which was included
in the training set. We indicate the number of features with such values as Edge features. They are
naturally difficult to fit due to their position at the border or edge in the feature hyperspace.
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Table S8: Difficult to fit electrolyte formulations in a leave-one-out CV. For each leave out electrolyte
formulation, the MAE is given for the prediction of a Neural Network model trained on the data
excluding that specific point. The number of edge features counts how many features are either 0 or
1. For zy,sait every value < 0.025 also counts as an edge feature because there are no measurements
with zpisair = 0. Also zgc > 0.70 and xpc > 0.70 count as edge features, because there are no
measurements for higher values.

TLiSalt  TLiPF, TEC rpc MAE SO MAE S1 MAE S2 Edge features

2 0.016  0.504 0.712 0.064 0.000 0.114 0.249
3 0.016  0.110 0.713 0.064 0.004 0.111 0.285
56 0.019  1.000 0.048 0.272 0.022 0.034 0.272
o7 0.019  0.505 0.000 0.304 0.023 0.091 0.338
99 0.019  0.000 0.048 0.273 0.046 0.033 0.236
63 0.020  0.884 0.000 0.304 0.031 0.273 0.452
64 0.020  0.000 0.000 0.304 0.066 0.212 0.241

69 0.021  1.000 0.000 0.000 0.002 0.145 0.215
125 0.091  0.899 0.202 0.148 0.044 0.318 0.520
129 0.092  0.501 0.000 0.505 0.044 0.549 0.771
130  0.092  0.000 0.106 0.451 0.025 0.212 0.201
142 0.096  0.100 0.000 0.304 0.006 0.333 0.485
170 0.171  0.897 0.336 0.000 0.016 0.033 0.207
188 0.185  0.499 0.000 0.305 0.012 0.136 0.332

== == RO W WD NN DN =
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S14 Predicted 1D slices for —20°C and 60°C
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Figure S26: 1D slices corresponding to Figure 6 in the paper at a temperature of —20°C of predictions
for physically reasonable LR opt, .M and NN models (a, c-i) and non-physical RF and A.M models
(b). The slices are chosen such that they always include the composition with the maximum ionic
conductivity predicted by the NN model at —20°C, except when varying xpc, where we set xpc = 0
to compare both directly for a similar amount of EC. (a,b,d-f) show log —>— and (c, g-i) shows
o directly. The area between the dashed vertical lines indicates compositions for which the ionic
conductivity, predicted by the NN model, is larger than 0.9 times the maximum ionic conductivity.
(a-c) show slices in which wpsay is varied, zpipr, is varied in (d,g), zgc is varied in (e,h) and xpc is
varied in (f,i). The fixed features are described in the subplots caption.
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(g) Trisat = 0.087, TLiPFg: Var- (h) Trisait = 0.087, ZTLiPF, = 0, (l) rrisait = 0.087, ZTLiPF, = 0,
ied, zgc = 0.73, zpc = 0. rrc: varied, rpc = 0. rrc = 0.73, xpc: varied.

Figure S27: 1D slices corresponding to Figure 6 in the paper at a temperature of 60°C of predictions for
physically reasonable LR opt, .M, NN models (a, c-i) and non-physical RF and A.M models (b). The
slices are chosen such that they always include the composition with the maximum ionic conductivity
predicted by the NN model at 60°C, except when varying xpc, where we set xpc = 0 to compare both
directly for a similar amount of EC. (a,b,d-f) show log s and (c, g-i) shows o directly. The area
between the dashed vertical lines indicates compositions for which the ionic conductivity, predicted by
the NN model, is larger than 0.9 times the maximum ionic conductivity. (a-c) show slices in which
TLisal is varied, zripr, is varied in (d,g), zrc is varied in (e,h) and xpc is varied in (f,i). The fixed
features are described in the subplots caption.
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S15 Predictions for different temperatures

Here, we show 1D slices (Figure S28) where we vary one feature and keep the other features constant
at the optimum composition predicted by the NN model for 20°C. Then we vary the temperature to
observe the effects of varying the temperature for one specific electrolyte composition. In general,
the ionic conductivity o increases, when increasing the temperature. When varying either zpipr, or
xpc under this conditions nothing interesting happens. However, when increasing 15,1t the maximum
shifts towards larger values and the area with an ionic conductivity o larger than 90% of the maximum
broadens. Similar happens when increasing rgc. The optimum shifts to larger values with a strong
broadening of the optimal area around the maximum. However, we have to clarify here once again
that we do not show the optimal composition for larger temperatures, but the prediction at 60°C of
the optimal composition at 20°C.
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Figure S28: Neural Network model predictions for different electrolyte formulations analog to Figure
6 in the main article and different temperatures.

To highlight the pyhsical insight gained from Figure 8 and Figure S28 we plot Figure S28 also in
logarithmic scale (Figure S29). Especially the dependence of the logarithmic ionic conductivity on zgc
(Figure S29c¢) shows interesting behavior. From Figure 8b, we can learn that the activation energy for
small amounts of lithium salt is nearly independent of zgc. This is reflected by a similar gradient for
low amounts of EC (zgc < 0.2) in Figure S29c for all temperatures. Particularly for 40°C and 60°C the
gradient is similar for all amounts of EC, whereas we observe large deviations for lower temperatures
from this behavior. This can be explained by the fact that the deviations from Arrhenius behavior
significantly depend on zgc and increase with the EC content (as can be learned from Figure 8c).
With increasing temperature difference between onset temperature and prediction temperature, these
deviations become more important compared to the activation energy and govern the overall behavior
of the ionic conductivity when varying the EC content.
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Figure S29: Neural Network model predictions for different electrolyte formulations analog to Fig-
ure S28 in logarithmic scale.
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S16 Predicted 2D slices for —20°C and 60°C
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Figure S30: 2D slices for the predictions of the NN model at —20°C corresponding to Figure 7 in the
main article. Two features are fixed and two features are varied for each subfigure. The fixed features
are chosen in a way that the composition with the global maximum ionic conductivity o at —20°C is
included in each slice (indicated by a black circle. The circle does not correspond to the maximum

necessarily, because we show log
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Figure S31: 2D slices for the predictions of the NN model at 60°C corresponding to Figure 7 in the
paper. Two features are fixed and two features are varied for each subfigure. The fixed features are
chosen in a way that the composition with the global maximum ionic conductivity o at 20°C is included
in each slice (indicated by a black circle. The circle does not correspond to the maximum necessarily,

g ).

because we show log R
1moa.
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S17 2D slices of Arrhenius coefficient predictions

Xec=0.557 Xpc=0.0

0.2 0.3
XLisalt

Xec=0.557 xpc=0.0

0.1 0.2
XLisalt

Xec=0.557 xpc=0.0

0.2
XLisalt

(a) zrisaly and rLipr, varied, rrc=0.56, rpc=0.
X1ipr.=0.0 Xpc=0.0

Xtipe,=0.0 Xpc=0.0 0.320

-0.520
-0.720
-0.920

-1.320
-1.520
-1.720
-1.920

0.2
XLisalt

Xpc

0.2
XLisalt

X1jsalt=0.077 Xpc=0.0

-0.680
-0.760
-0.840
-0.920
-1.000

-1.160
-1.240
-1.320
-1.400

0.4 0.6
XLiPFg

1205 804

o
-1.080

2.200
1.950
1.700
1.450
1.20045
0.950
0.2 0.700
0.450
] 0.200

0.1 0.2
XLisalt

XLipr,=0.0 Xgc=0.557

Xpc

0.2
XLisalt

XLisalt=0.077 Xpc=0.0

0.480
0.448
0.416
0.384

0.4

o
X
0.320

02 0.288
0.256

B 54

080 02 04 06 08
XLiPFe

0.35200

Xiipr,=0.0 Xpc=0.0
004
2
<

0.2

0.2
XLisalt

(b) zvLisart and zgc varied, rLipr, =0, zPc=0.

XLipe,=0.0 Xgc=0.557

0.2
XLisalt

(¢) zrisais and zpc varied, rLipr, =0, TEc=0.56.

=0.077 Xpc=0.0

0.4

Q.
o
X

0.2

0. 2 04 06 08
XLiPFg

(d) xLisalt:0.077, mLiPFGZO and TEC varied, JSPCZO.

545




X|isalt=0.077 Xgc=0.557 XLisalt=0.077 Xgc=0.557

0.680
0.648
0.616
0.584
05520
0.520
0.488
0.456

080 02 04 06 08 1004
XLiPFg XLipFs XuipFs

Xpc
Xpc

(e) zLisa1s=0.077, zLipr, and , zpc varied, zec=0.56.

X isalt=0.077 Xyipr,=0.0 Xisalt=0.077 Xipr,=0.0

X1isalt=0.077 Xyipr,=0.0

0.6
,04
g
X
02
080 02 04 06 08, . 0.4 080
XEC XEC

(f) 2risa18=0.077, zLipr,=0, Trc and zpc varied.

Figure S32: 2D slices of Arrhenius coefficient predictions for the NN model with an onset temperature
of 60°C. All 2D slices bisect the predicted optimal composition at 20°C analog to Figure 7 in the main

article and span the training feature space.
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S18 Further Data available

The LECA code is available under https://github.com/Harrison-Teeg/LECA/ and its documentation
under https://leca.readthedocs.io. Jupyter-notebooks to create the graphics in the paper and ESI will
be made available after publication. The complete dataset is available.
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