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Table S1. Structural parameters of the hydrogels (CC-Ho, CC-Di and CC-He) and the solar 

desalination performance of evaporators with different pore/vessel sizes

Evaporators CC-Ho CC-Di CC-He

Surface morphology

& Porous structure

Random Anisotropic Radiant +Anisotropic

Pore/vessel size (μm) 60~80 Micro-channel: 

30~40

Pit diameter: ~1000

Radiant vessel: ~25

Cellular channel: 

30~50

Large-sized channel: 

200~300

(3.5 wt%, 4 h, 1-sun)

Rate (kg/m2∙h)

2.23 3.18 3.86

Salt resistance No No No

(20 wt%, 4 h, 1-sun)

Rate (kg/m2∙h)

1.52 2.98 3.82

Salt resistance Yes No No

(20 wt%, 8 h, 2-sun)

Rate (kg/m2∙h)

3.09 5.14

Salt resistance

None

Yes No

(20 wt%, 8 h, 3-sun)

Rate (kg/m2∙h)

2.92 6.55

Salt resistance

None

Yes Salt shell
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Table S2. The values of mechanical parameters f for the three types of hydrogels with or free of 

PA crosslinking

Samples Young's 

modulus

(KPa)

Yield 

strength

(KPa)

Compression 

strength

(KPa)

CC-Ho without 

PA

77.90±1.22 1.95±0.11 49.15±1.31

CC-Di without PA 119.38±1.70 2.94±0.22 37.16±1.07

CC-He without 

PA

72.14±0.61 2.50±0.13 58.11±1.18

CC-Ho 979.54±22.03 7.26±0.42 135.74±1.51

CC-Di 1013.70±3.50 18.93±0.21 117.61±1.35

CC-He 634.22±1.54 20.56±0.19 161.00±1.42



S6

Table S3. Evaporation efficiencies of the CC-He hydrogel and some reported hydrogel-based 

evaporators

Hydrogel evaporators Morphology

Evaporation 

rate

(kg m-2h-1)

Evaporation 

efficiency

(%)

Conditions

SPI/HEC/CB [ref.s1]
vertical radiant 

vessels
3.53 81.6 20 wt%/8h/1-sun

Cellulose/Alginate/CB 

[ref.s2]

3D-printed 

hierarchical 

porous

1.33 90.6 seawater/1h/1-sun

PVA/CS/PPy [ref.s3] random porous 3.6 92 seawater/1h/1-sun

PVA/PPy [ref.s4] micro-trees 3.64 96 seawater/1h/1-sun

PVA/KGM/Fe-MOF 

[ref.s5]

vertical tubular 

interconnected 

channels

3.2 90 seawater/1h/1-sun

Cellulose/CB [ref.s6]
monolithic 

design
1.82 95 seawater/1h/1-sun

PVA/SA/PAAS [ref.s7]
monolithic 

design
2.2 89.98 seawater/1h/1-sun

rGO/SA/PSF [ref.s8] multi-channels 1.85 96.4 10 wt%/10h/1-sun

CS/CNT@TA 

(this work)

radial vessels 

and bimodal 

channels

3.87 96.7 20 wt%/8h/1-sun

[ref.s1] Liu, X.; Chen, F.; Li, Y.; Jiang, H.; Mishra, D. D.; Yu, F.; Chen, Z.; Hu, C.; Chen, Y.; Qu, L.; Zheng, W. 

3D Hydrogel Evaporator with Vertical Radiant Vessels Breaking the Trade‐Off between Thermal Localization and 

Salt Resistance for Solar Desalination of High‐Salinity. Adv. Mater. 2022, 34 (36), 2203137.

[ref.s2] Yuan, J.; Lei, X.; Yi, C.; Jiang, H.; Liu, F.; Cheng, G. J. 3D-Printed Hierarchical Porous 
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Cellulose/Alginate/Carbon Black Hydrogel for High-Efficiency Solar Steam Generation. Chem. Eng. J. 2022, 430, 

132765.

[ref.s3] Zhou, X.; Zhao, F.; Guo, Y.; Rosenberger, B.; Yu, G. Architecting Highly Hydratable Polymer Networks 

to Tune the Water State for Solar Water Purification. Sci. Adv. 2019, 5 (6), eaaw5484.

[ref.s4] Shi, Y.; Ilic, O.; Atwater, H. A.; Greer, J. R. All-Day Fresh Water Harvesting by Microstructured 

Hydrogel Membranes. Nat. Commun. 2021, 12 (1), 2797.

[ref.s5] Guo, Y.; Lu, H.; Zhao, F.; Zhou, X.; Shi, W.; Yu, G. Biomass‐Derived Hybrid Hydrogel Evaporators for 

Cost‐Effective Solar Water Purification. Adv. Mater. 2020, 32 (11), 1907061.

[ref.s6] Li, N.; Qiao, L.; He, J.; Wang, S.; Yu, L.; Murto, P.; Li, X.; Xu, X. Solar‐Driven Interfacial Evaporation 

and Self‐Powered Water Wave Detection Based on an All‐Cellulose Monolithic Design. Adv. Funct. Mater. 2021, 

31 (7), 2008681.

[ref.s7] Li, F.; Li, N.; Wang, S.; Qiao, L.; Yu, L.; Murto, P.; Xu, X. Self‐Repairing and Damage‐Tolerant 

Hydrogels for Efficient Solar‐Powered Water Purification and Desalination. Adv. Funct. Mater. 2021, 31 (40), 

2104464.

[ref.s8] Ma, H.; Yu, L.; Li, Z.; Chen, J.; Meng, J.; Song, Q.; Liu, Y.; Wang, Y.; Wu, Q.; Miao, M.; Zhi, C. A Lotus 

Seedpods‐Inspired Interfacial Solar Steam Generator with Outstanding Salt Tolerance and Mechanical Properties 

for Efficient and Stable Seawater Desalination. Small 2023, 2304877.
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Table S4. Ionic concentration variations before and after treatment

Na+(mg/L) K+(mg/L) Ca2+(mg/L) Mg2+(mg/L)

Before 14122.5 151.3 43.43 118.6

After 0.852 0.157 0.137 0.071



S9

Figure S1. (a) The digital picture of the cold finger consisting of copper columns and PDMS, (b) 

the IR images showing uneven temperature distribution in a cold environment, and (c) the 

schematic diagram of heterogeneous nucleation.
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Figure S2. The P2p binding energy spectrum of (a) the CC-He hydrogel without PA treatment and 

(b) the CC-He hydrogel.
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Figure S3. (a) The dynamic modulus alterations of the CS precursor after 3 cycles of freeze-

thawing (FT) treatments, and (b-d) the modulus variations recorded during FT treatments.

Note: The freezing-thawing process was mimicked by the oscillation temperature ramp tests. 

The freezing rate (1 oC/min) was applied from 0 oC to -15 oC, then the temperature was raised to 

25 oC with a heating rate (5 oC/min), and the modulus change was detected under 0.1% strain and 

1 Hz. Then, the oscillation frequency sweep was immediately performed at 0.1% strain from 0.1 

to 100 rad/s within the linear viscoelastic region. The freeze-thawing test was performed by 3 

cycles. The results revealed that stable 3D physical networks could spontaneously form in the CS 

precursor under cold condition without additional freezing step.
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Figure S4. The integral area of hysteretic cycle and unrecoverable strain for each step of cyclic 

compression.
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Figure S5. The absorption times of (a) CC-Di and (b) CC-Ho hydrogels.
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Figure S6. Top surface wetting process of the CC-He hydrogel through vertical water 

transportation.
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Figure S7. Surface temperature variations of bulk water, CC-Ho, CC-Di and CC-He evaporators 

under 1 sun illumination.
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Figure S8. The DSC traces of pure water and the hydrogel evaporators with different structures 

(heating rate: 5 oC/min).

Note: The heat flow signal of pure water decreases dramatically after reaching the maximum at 

100 oC, indicating that the water evaporation is completed immediately. The measured 

evaporation enthalpy of pure water is 2435 J/g, which is very close to the theoretical value of 2450 

J/g. Due to the influence of polymer networks on the evaporation process, the evaporation 

enthalpy of water in the hydrogel evaporators is much small than that of pure water. However, the 

enthalpy values obtained by the DSC tests are higher than those tested in dark condition 

experiment because the DSC test presents a full dehydration that consumes additional energy for 

the bound water and free water in the hydrogels.
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Figure S9. Long-term solar steam performance of the CC-He hydrogel under 1 sun for 100 h 

without salt blocking issue.
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Figure S10. The digital pictures of the evaporation surface of CC-He preplaced with the salts 

(working in 20 wt% brine under 3-sun illumination).

Note: The salts preplaced on the evaporation surface of CC-He evaporator completely dissolved 

within 30 min (in 20 wt% brine) under 3-sun illumination. Dissolution occurred around the center 

(the radical paths and macro-pores coexist in this region), and then occurred away from the center 

gradually.


