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Computational Methods During the process of searching the ground state of Mg2Si mono-

layer by CALYPSO package, we considere the stoichiometric of 2:1. The initial structures are

randomly generated through plane group symmetry operations and then relaxed. We select 60%

of the low-energy structures to produce next generation. Finally, after 30 generations, over 1500

planar and folded Mg2Si monolayer structures are obtained. We select and optimize the top 10

low-energy structures to find the true ground state structure. It is found that the Mg2Si monolayer

proposed in this work is the most stable by stability calculation.

The in-plane Young’s modulus (E(θ)) and Poisson’s ratio (ν(θ)) with directional dependence

can be calculated based on the theory of elastic solids,1 as follows:

E(θ) =
C11C22 −C12

2

C11 sin4 θ +C22 cos4 θ + A sin2 θ cos2 θ
(1)

ν(θ) = −
B sin2 θ cos2 θ −C12(sin4 θ cos4 θ)

C11 sin4 θ +C22 cos4 θ + A sin2 θ cos2 θ
(2)

where Ci j is the elastic constant, θ is the angle, A = (C11C22 − C12
2)/C66 − 2C12 and B = C11 +

C22 − (C11C22 −C12
2)/C66.

The cohesive energy of Mg2Si monolayer can be calculated by the following equation:

Ecoh =
mEMg + nES i − EMg2S i

m + n
(3)

where EMg and ES i are the energies of the Mg atom and the Si atom, respectively. EMg2S i is the

total energy of the Mg2Si monolayer. The m and n represent the number of Mg and Si atoms in the

primary cell, respectively.

The lattice thermal conductivity of Mg2Si monolayer using Cahill–Watson–Pohl (CWP) model

(κcwp) is calculated by the following equation:2

κcwp = (
π

6
)1/3kBn2/3

∑
i

vi(
T
θi

)2
∫ θi/T

0

x3ex

(ex − 1)2 dx (4)

where kB, n, vi, and θi are Boltzmann constant, atom density, the phonon velocity and Debye
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temperature of the acoustic branch i, respectively. The Debye temperature is θi = vi( ℏkB
)(6π2n)1/3.

The carrier mobility of 2D materials can be calculated by3

µ2D =
eℏ3C2D

kBTm∗md
∗E1

2 (5)

where e, C2D, kB, m∗, md
∗, E1 are electron charge, elastic constant, Boltzmann constant, effective

mass, average effective mass and deformation potential constant, respectively. The C2D can be cal-

culated by C2D = [∂2E/∂(∆a/a0)2]/S 0, where E, a0, ∆a, and S 0 are the total energy of the system

under strain, lattice parameters, the change value of lattice parameters, and the area of unstrained

unit cell after structure optimization, respectively. m∗ can be obtained from m∗ = ℏ2/(∂2E/∂k2),

and md
∗ =
√

mx
∗my

∗. The E1 can be obtained by E1 = ∂Eedge/∂E(∆a/a0), where Eedge is the band-

edge energy of Mg2Si monolayer. Therefore, we can get the τ from carrier mobility as follows

τ =
µm∗

e
(6)
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Fig. S1 The (a) top and (b) side views of T-phase Mg2Si monolayer crystal structure. The blue

balls represent Si atoms and the orange balls represent Mg atoms.
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Fig. S2 Projected density of states of Mg2Si monolayer.
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Fig. S3 (a) Top and (c) side views of two-dimensional Mg2Si. Electronic localization function of

(b) top and (d) side views of Mg2Si monolayer.

Fig. S4 Variation of Mg2Si monolayer structure under stretch strain along x direction.
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Fig. S5 The fluctuation of free energy of two-dimensional Mg2Si monolayer (a-d) at 300-900 K

is achieved by AIMD simulations lasting 10 ps. The inset of figures show the crystal structures

of Mg2Si monolayer at different temperatures. The curves of free energy at different temperatures

do not fluctuate widely after 1 ps, providing sufficient evidence for its thermal stability. More

computational resources will be required when the longer simulation time is used. The simulation

time of 10 ps not only ensures the accuracy of calculation, but also considers the utilization of

computational resources. And in many other two-dimensional materials,4, 5 the thermal stability of

the materials are also calculated by using molecular dynamis simulations lasting 10 ps. Therefore,

simulation time of 10 ps is enough to determine the thermal stability of Mg2Si monolayer.
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Fig. S6 Convergence test of the lattice thermal conductivity of Mg2Si monolayer with the change

of (a) nearest neighbors and (b) Q-grid.
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Fig. S7 The (a, b) phonon mean free path of Mg2Si monolayer as functions of the frequency at 300

K.
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Fig. S8 The total energy of Mg2Si monolayer under different strain with respect to the strain along

(a) x and (b) y directions.
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Fig. S9 The edge energies shift of VBM and CBM of Mg2Si monolayer with respect to the strain

along (a) x and (b) y directions.
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Fig. S10 The electrical conductivity of the Mg2Si monolayer as the function of (a, b) hole or (c, d)

electron doping concentration along x or y direction at different temperatures at HSE06 method.
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Fig. S11 The electronic thermal conductivity of the Mg2Si monolayer as the function of (a, b) hole

or (c, d) electron doping concentration along x or y direction at different temperatures at HSE06

method.
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Table S1 Calculated equilibrium lattice parameters (a and b in Å), buckling distance (d in Å), bond

length (Mg-Si in Å) and band gap (Eg in eV) of the 2D Mg2Si monolayer.

Mg2Si a b d <Mg-Si>1 <Mg-Si>2 <Mg-Si>3 <Mg-Si>4 Eg

our 7.319 4.363 2.036 2.672 2.690 2.670 2.681 0.51 (PBE)

0.94 (HSE06)

other6 7.28 4.34 2.03 0.95 (HSE06)

Table S2 Calculated the elastic coefficient (C2D in J/m2), DP constant (E1 in eV), effective mass

(m∗ in m0), carrier mobility (µ in cm2/Vs) and relaxation time (τ in fs) of 2D Mg2Si at room

temperature.

direction carrier type C2D E1 m∗ µ τ

x electron 16.29 6.00 0.38 76.15 16.39

hole 16.29 -0.38 0.59 15720.23 5298.82

y electron 49.42 3.20 0.30 1029.36 174.65

hole 49.42 -8.28 0.11 525.63 33.82
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Table S3 Calculated Poisson’s ratio and ZT of Mg2Si monolayer and comparison materials. The

ZT values represent their maximum at 300 K.

2D material Poisson’s ratio ZT

Mg2Si (this work) -0.364 2.51

C2H7 -0.071 0.93

C2F7 -0.042 0.80

Ag2S8 -0.11 0.72

AgCuS8 -0.06 0.84

pentagonal tellurene9 -0.01 2.84

Si9C15
10 -0.175 1.25 (800 K)
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