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Section S1. Details on ZeoDiff 

Section S1-1. Data preparation 

All three channels (energy/silicon/oxygen) comprising zeolite grids were normalized within the 

range of [-1, 1] and used as an input for the model. For energy grids, energy values were clipped 

to [-4000 K, 5000 K] before the normalization, as potential energy goes infinitely high for the 

region overlapped at the atom positions. A lower bound of the energy was set to be -4000 K since 

there was no grid point whose value was lower than -4000 K.  

Data augmentation was implemented to impose translational and rotational invariance to the model. 

For rotation, one random axis (from [x, y, z]) was selected and the grids were rotated by 90 ° with 

respect to selected axis. For translation, one random displacement was selected (from [0~31, 0~31, 

0~31]) and the grids were shifted accordingly with considering periodic boundary conditions. For 

each structure consisting the training dataset, two additional structures (one rotationally augmented 

structure and the other translationally augmented structure) were considered for the training. 
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Section S1-2. ZeoDiff architecture 
 

ZeoDiff incorporates a U-Net as a model architecture, as shown in Figure S1. U-Net is one of the 

most widely used architecture in the field of image processing. In the context of ZeoDiff, U-Net 

components are slightly modified to handle three dimensional data (e.g. 2D Convolutional layer 

 3D Convolutional layer). It is also noteworthy that, the convolutional layers of U-Net in ZeoDiff 

employ circular padding option to account for periodic boundary condition of zeolite grids. 

 

Figure S1. 3D U-Net architecture used in ZeoDiff. Original 2D U-Net was modified to handle 

zeolite grids (3D data with 3 channels). ‘B’, ‘Res’, ‘Att’ stand for batch size, resnet block and 

attention block, respectively. Number of trainable parameter of the model was 5.6 million. 
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Table S1. Hyperparameters used for ZeoDiff training 

 

  

Hyperparameter Value 

Diffusion time steps 1500 

Variance scheduling 

𝛽1 0.0001 

𝛽𝑇 0.02 

schedule type linear 

Batch size 128 

Convolution kernel size 3 x 3 x 3 

Learning rate 0.0001 

Loss type huber 

Max epochs 2000 

Early stopping criteria 50 

Exponential Moving Average (EMA) True 

EMA ratio 0.9999 
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Section S1-4. Zeolite generation workflow 

The overall workflow for zeolite generation is illustrated in Figure S2. As demonstrated in previous 

sections, ZeoDiff is used to generate realistic zeolite grids. Afterwards, an additional lattice 

regressor is utilized to predict the lattice parameters for the generated grids. The lattice regressor 

share the same U-Net architecture as ZeoDiff (Figure S1), but the only difference is that its output 

layer is designed to predict lattice parameters (lx, ly, and lz). Finally, a post-processing is 

implemented (which will be discussed in more detail in the next section) to obtain perfect zeolite 

structures. 

 

 

 

Figure S2. Overall workflow for zeolite generation. ZeoDiff and lattice regressor are used to 

generate zeolite grids with lattice parameters. Post-processing is implemented to obtain perfect 

zeolite structures from zeolite grids. 
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Section S2. Details on Post-Processing Procedure 

The post-processing procedure is depicted in Figure 2 of the main text. In this section, we will 

discuss each step of the post-processing procedure in more detail.  

 

Assigning Atom Coordinates 

A volume-based method was used to assign atomic positions from the generated zeolite grids. 

Firstly, Gaussian volumes were detected using a flood-fill algorithm with a volume detection limit 

of 0.7. (Neighboring regions with Gaussian value larger than 0.7 was defined as Gaussian volumes.) 

After then, the atomic position was determined by calculating the weighted mean of the grid 

coordinates and their corresponding Gaussian values. This approach allowed for an accurate 

estimation of the atomic positions from noisy outputs of ZeoDiff. 

 

Determining Bond Connectivity 

In the case of perfect zeolite structures, each silicon atom is bonded with four different oxygen 

atoms and each oxygen atom is bonded with two different silicon atoms. Therefore, in this work, 

the connectivity of the zeolite structure was defined as the ratio of atoms that possess the correct 

number of bonds (silicon: 4 bonds, oxygen: 2 bonds). To assess the bond connectivity of the 

generated structures, Si-O bond calculations were performed using a suitable bond threshold of 

2.5 Å. 
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Repairing Bond Connectivity 

The algorithm demonstrated in Table S2 was used for the bond restoration. Each move within the 

algorithm is illustrated in Figure S3. 

 

 

Table S2. Connectivity Repair Algorithm. 
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Figure S3. Possible moves for the connectivity repair algorithm. Possible moves for the 

connectivity repair algorithm explained in Table S2. (A) For an unsaturated silicon atom, a new 

oxygen atom is inserted at the midpoint with another unsaturated silicon atom. (B, D, G) Atoms 

with incorrect bond count are deleted. (C) For a silicon atom with more than 4 bonds, one of its 

bonded oxygen atoms is removed. (E) For an unsaturated oxygen atom, a new silicon atom is 

inserted at the midpoint with another unsaturated oxygen atom. (F) If Si-O-Si bond is duplicated 

between same silicon atoms, one of them is removed. 
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Counting the Number of Unique T atoms 

 

Unique T atom is defined as a Si atom within a pure silica zeolite that exhibits distinct topology 

compared to others. It is worth noting that the majority of the experimentally synthesized zeolites 

and all of the hypothetical zeolites in PCOD database possess fewer than 10 unique T atoms.1 The 

number of unique T atoms of given structures was counted by comparing the coordination 

sequence of each Si atom (Figure S4). The coordination sequence is defined as the number of 

neighboring Si atom it is directly bonded to, arranged in increasing order of distance. If two Si 

atoms are unique T atoms, then those two Si atoms exhibit different coordination sequences. In 

this work, the coordination sequence was considered up to the 10th nearest neighbors. (The 

coordination sequence was also used to check the identity between the structures.) 

 

 

Figure S4. Coordination Sequence. The coordination sequence for each silicon (Si) atom refers 

to the number of neighboring silicon atoms it is directly bonded to, arranged in increasing order 

of distance. In other words, it describes the number of silicon atoms surrounding a particular Si 

atom at different distances. 
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Structure Relaxation 

 

Structures generated from the workflow were relaxed by using sequential optimization steps. In 

the first step, as a pre-relaxation, structures were optimized using Forcite module of the Material 

Studio2 using UFF (Universal Force Field3) with the van der Waals cutoff radius of 12.5 Å . 

Smart minimizer algorithm was used with the moderate accuracy option. After then, structures 

were optimized again with the SLC force field4 using GULP software5. Pre-relaxation step was 

required to overcome the distance sensitivity of the SLC potential. 

  



 11 

Section S3. Details on Unconditional Generation 

 

Figure S5. Distribution of chemical properties of unconditionally generated samples. The 

distribution of the Henry coefficient, void fraction and heat of adsorption of unconditionally 

generated 10,000 samples with comparison of training dataset. 
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Thermodynamic Stability 

 

Thermodynamic stability of the generated zeolite structures were examined using the metric 

proposed by Deem and coworkers1 which assessed the thermodynamic stability of the structure by 

calculating the relative energy to α-quartz (the most common polymorph of the silica). The 

structures were optimized using the SLC force field4, and classified as ‘thermodynamically 

accessible’ or ‘thermodynamically inaccessible’ depending on whether the relative energy is 

smaller than 30 kJ/mol Si or not. 

We applied the same metric to the structures generated in an unconditional manner to assess the 

thermodynamic stability of the generated samples. 1D and 2D structures were excluded as their 

optimization process was not simulated properly with SLC force field, and the number of the 

samples was 146. As illustrated in Figure S6, 91.1 % of the samples exhibited the relative energy 

lower than 30 kJ/mol Si, which satisfied thermodynamic stability metric of Deem. One 

interpretation of this lager proportion of stable structures is that, as we apply additional post-

processing procedure (Figure 2), those structure which energetically unstable would be excluded 

in advance. 

 

Figure S6. Relative energy of the unconditionally generated structure to α-quartz. Structures 

with relative energy lower than 30 kJ/mol Si were deemed to be thermodynamically accessible. 
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Figure S7. Zeolites generated using ZeoDiff and their corresponding structures in training 

dataset (IZA/PCOD).  Dashed blue line indicates the matching portion within the structures. 
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Figure S8. Zeolites generated using ZeoDiff and their corresponding structures in test 

dataset (IZA/PCOD).  Dashed blue line indicates the matching portion within the structures. 
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Impact of Post-processing Procedure on Chemical Properties 

 

In our workflow, energy grids generated from the diffusion model were directly used to calculate 

the chemical properties. However, during the post-processing procedure (Figure 2), modifications 

in atomic coordination take place, leading to alterations in energy grids and chemical properties of 

the output structures. To assess the impact of the post-processing step on the chemical properties, 

for the 102 structures generated in an unconditional manner, we re-calculated the chemical 

properties from the cleaned-up structures and compared them with values computed from the 

diffusion-generated grids. As depicted in Figure S9, minimal differences in values were observed 

before and after post-processing for relatively simple chemical properties (e.g. void fraction). In 

contrast, discrepancies appeared for relatively sensitive or complex properties (e.g. Henry 

coefficient). This suggests that discrepancies could become more pronounced when dealing with 

more challenging gases, such as CO2, or with structurally complex substances like MOFs. 

This discrepancy is directly correlated with the performance of the diffusion model. If the model’s 

performance is excellent and all the generated samples are highly realistic, the structural changes 

during the post-processing procedure would be minimized, resulting in a decrease in the 

discrepancy. Therefore, the most straightforward way to address this issue would be to enhance 

the performance of the diffusion model by utilizing advanced algorithms and/or training with a 

higher-quality dataset. 

 
Figure S9. Parity plot between the chemical properties calculated from the energy grids 

obtained from the diffusion model and those calculated from the cleaned-up structures. 
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Section S4. Details on Conditional Generation  

 
  
Figure S10. Difference in model architecture between the unconditional and conditional 

ZeoDiff models.  Only the first block of the U-Net architecture is represented. As can be checked, 

the conditional model takes additional context as an input and the only difference between the two 

models is the dimensionality of the input.  
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Figure S11. Inverse design targeted on heat of adsorption with an additional Boltzmann grid.  

To compare with the model trained without Boltzmann grid (Figure 5b), no prominent 

enhancement on the model’s performance was observed. This implies that, the representation of 

three channels (Energy, Si, and O) still provides the model with sufficient information to 

understand the relationship between the structure and the heat of adsorption.  
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