	$Cu(NO_3)_2 \cdot 3H_2O$	H ₃ BTC	modulator
Cu-BTC_RT_10	0.014 M	0.009 M	0.14 M
Cu-BTC_RT_20	0.014 M	0.009 M	0.28 M

Table S1. Synthesis conditions of Cu-BTC_RT_x under room temperature synthesis.

Table S2. Synthesis conditions of Cu-BTC_y under solvothermal synthesis.

	$Cu(NO_3)_2 \cdot 3H_2O$	H ₃ BTC	modulator	
Cu-BTC_0	0.12 M	0.08 M	-	
Cu-BTC_2	0.12 M	0.08 M	0.24 M	
Cu-BTC_10	0.12 M	0.08 M	1.21 M	
Cu-BTC_20	0.12 M	0.08 M	2.43 M	

Materials	Deposition	Current	Coulombic	Cycle	Nucleation
	Capacity	Density	Efficiency	Number	Overpotential
	$(mA h cm^{-2})$	$(mA cm^{-2})$	(%)		(mV)
Crumpled Graphene ¹	1	0.5	97%	50	
Cu-CuO-Ni	1	1	95%	250	
hybrid structure ²					
Ag@NCS ³	4	0.5	98.6%	400	~1
AgNPs@Cu ⁴	1	1	94.5%	100	
CuO NAs/CF (MOF-	1	1	98%	180	30
derived CuO nanorod					
arrays on Cu foil					
current collector) ⁵					
Ag@HKUST-16	1	0.5	97%	300	3
	1	1	97.50%	50	
	5	1	98.50%	50	
Modulated	1	1	98.2%	520	0.6
CuBTC ^(This work)					
Ag@CuBTC(This work)	1	1	92.3%	70	

Table S3. Comparison of the cycling stability with the previously reported Li deposition.

Figure S1. Raman spectra of Cu-BTC_0 and Cu-BTC_10, and the corresponding silverdoped MOFs Ag@Cu-BTC_0 and Ag@Cu-BTC_10.

Figure S2. XPS (a) C 1s, (b) O 1s, (c) Cu 2p_{3/2}, and (d) Ag 3d spectra of Cu-BTC_0 and Cu-BTC_20, and the corresponding silver-doped MOF Ag@Cu-BTC_20.

Figure S3. The TEM image of Ag@Cu-BTC_10 (a), (b) HRTEM for Ag d-spacing, (c) STEM image, and (d-f) STEM-EDS mapping results.

Figure S4. The TEM image of Ag@Cu-BTC_0 (a), (b) HRTEM for Ag d-spacing, (c) STEM image, and (d-f) STEM-EDS mapping results.

Ra: 162 nm

Ra: 90 nm

Ra: 130 nm

Figure S5. AFM scans of (a-d) Cu-BTC_0, 2, 10, 20 electrodes.

Figure S6. Contact angles of electrolyte on the (a) Copper foil, (b-e) Cu-BTC_0, 2, 10, and 20 electrodes.

Figure S7. Contact angles of electrolyte on the (a) Ag@Cu-BTC_0 and (b) Ag@Cu-BTC_10 electrodes.

Reference

- S. Liu, A. Wang, Q. Li, J. Wu, K. Chiou, J. Huang and J. Luo, *Joule*, 2018, 2, 184– 193.
- 2 S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng, J. Cai, J. Shen, Y. Zhu, K. Zhang and W. Zhang, *Adv. Mater.*, 2018, **30**, 1–7.
- 3 Z. Jiang, C. Meng, G. Chen, R. Yuan, A. Li, J. Zhou, X. Chen and H. Song, J. Colloid Interface Sci., 2022, 627, 783–792.
- 4 Z. Hou, Y. Yu, W. Wang, X. Zhao, Q. Di, Q. Chen, W. Chen, Y. Liu and Z. Quan, *ACS Appl. Mater. Interfaces*, 2019, **11**, 8148–8154.
- 5 L. Wei, L. Li, T. Zhao, N. Zhang, Y. Zhao, F. Wu and R. Chen, *Nanoscale*, 2020, **12**, 9416–9422.
- 6 S. Yuan, J. L. Bao, C. Li, Y. Xia, D. G. Truhlar and Y. Wang, *ACS Appl. Mater. Interfaces*, 2019, **11**, 10616–10623.