Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplemental information

Enhanced Piezoelectricity and Spectral Absorption in Nd-doped Bismuth

Titanate Hierarchical Microspheres for Efficient Piezo-photocatalytic H₂

Production and Pollutant Degradation

Yan Zhao, Yan Zhang*, Qianqian Xu, Hanyu Gong, Mingyang Yan, Kaiyu Feng, Xiang Zhou, Xuefan Zhou*, Dou Zhang

State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410000, China

* Corresponding authors

E-mail: zhouxuefan@csu.edu.cn; yanzhangcsu@csu.edu.cn

Fig. S1. EDS mapping images of (a) BIT (b)BIT-Nd powders.

Fig. S2. N₂ sorption isotherm and pore size distribution curve of BIT-Nd and BIT powders.

Fig. S3. The high-resolution XPS spectra of (a) Bi 4f and (b) Ti 2p of the BIT-Nd powders.

Fig. S4 Optimized structures of (a) BIT and (b) BIT-Nd.

Fig. S5 C/C_o and ln (C_0/C) –t curve of BIT and BIT-Nd for degradation of 10 mg/L RhB under Vis Light (420-1100 nm), Light (190-1100 nm), Ultrasonic and combined Ultrasonic and Light excitation.

Fig. S6 Recycling of BIT-Nd and BIT powders during 5 piezo-photocatalytic cycles.

Fig. S7 Piezo-photocatalytic performance of BIT and BIT-Nd under ultrasonic and light for the degradation of 40 mg/L RhB

Fig. S8 XRD pattern of BIT-Nd powders after six cycles of H₂ production

Table S1 Comprehensive comparison of previously reported piezo-photocatalysts and this work

	Catalyst	С	Dye	C ₀	Condition	k×10-3	Ref.
		(Catalyst)		(Dye)		(min ⁻¹)	
1	Bi _{0.5} Na _{0.5} TiO ₃	05./1	DID	10 mg/L	Ultrasonic:40 kHz,110 W;	~61	1
	nanospheres	0.5 g/L	КЛВ		Light: 200 mW cm ⁻²		
2	Bi _{0.5} Na _{0.5} TiO ₃	0.5 g/L	RhB	10 mg/L	Ultrasonic:40 kHz,100 W;	27.9	2
	@TiO ₂				Light: visible light 300 W		

for degradation of RhB.

3	Na _{0.5} K _{0.5} NbO ₃ - 6LiNbO ₃	4 g/L	RhB	5 mg/L	Ultrasonic	25.16	3
4	BaTiO ₃ @TiO ₂ microflowers	0.5 g/L	RhB	10 mg/L	Ultrasonic:45 kHz,200 W; Light: visible light 300 W	274	4
5	CBN particles	0.5 g/L	RhB	10 mg/L	Ultrasonic:45 kHz,200 W; Light: visible light 300 W	131	5
6	Bi _{0.5} Na _{0.5} TiO ₃ @ BiVO ₄	1.0 g/L	RhB	5 mg/L	Ultrasonic:45 kHz,200W; Light: 300 W	110	6
7	BTCNO/5%-CN	0.6g/L	RhB	10 mg/L	Ultrasonic:45 kHz; Light: 300 W	48.9	7
8	BNT rods	1g/L	RhB	5 mg/ L	Ultrasonic:28 kHz,200w Light: 300w	~94	8
9	hexagonal ZnO crystals	1g/L	RhB	10 mg/L	Ultrasonic:40 kHz,300w Light: 300w	23.75	9
10	BaTiO ₃ @ReS ₂	0.4g/L	RhB	10 mg/L	Ultrasonic:40 kHz,100w Light: UV-vis	133	10
11	0.02La-BaTiO ₃	1g/L	RhB	5 mg/L	Ultrasonic:40 kHz,100w Light: 300 W	274	11
12	$Bi_4Ti_3O_{12}$ nanoplates	1g/L	RhB	5 mg/L	Ultrasonic:300 W, 40 kHz Light: 300W	141.4	12
13	BaTiO ₃ -OV	1.0g/L	RhB	10 mg/L	Ultrasonic:50 kHz,100 W	25.3	13
14	5%-Cl-ZnO NRs	0.2g/L	RhB	10 mg/L	Ultrasonic:40 kHz,100 W Light: 300w	23.2	14
15	BIT-Nd	1g/L	RhB	10mg/L	Ultrasonic:45 kHz,200 W; Light: 300 W	407	This Work

References

- Z. Zhao, L. Wei, S. Li, L. Zhu, Y. Su, Y. Liu, Y. Bu, Y. Lin, W. Liu and Z. Zhang, J. Mater. Chem. A, 2020, 8, 16238-16245.
- 2. X. Xu, X. Lin, F. Yang, S. Huang and X. Cheng, J. Phys. Chem. C, 2020, 124, 24126-24134.
- A. Zhang, Z. Liu, B. Xie, J. Lu, K. Guo, S. Ke, L. Shu and H. Fan, *Appl. Catal. B-Environ.*, 2020, 279, 119353-119365.
- Q. Liu, F. Zhan, H. Luo, D. Zhai, Z. Xiao, Q. Sun, Q. Yi, Y. Yang and D. Zhang, *Appl. Catal. B-Environ.*, 2022, **318**, 121817-121831.
- Q. Liu, F. Zhan, X. Luo, Q. Yi, Z. Xiao, D. Zhai, J. Huang, Y. Zhang, H. Luo, D. Zhang and C. R. Bowen, *Nano Energy*, 2023, **108**, 108252-108266.
- Q. Liu, Q. Hu, D. Zhai, Q. Sun, H. Luo and D. Zhang, J. Mater. Chem. A, 2021, 9, 17841-17854.
- 7. J. Bai, J. Xiang, C. Chen and C. Guo, *Chem. Eng. J.*, 2023, **456**, 141095-141102.
- 8. X. Zhou, Q. Sun, D. Zhai, G. Xue, H. Luo and D. Zhang, *Nano Energy*, 2021, 84, 1-12.
- F. Peng, H. Li, W. Xu, H. Min, Z. Li, F. Li, X. Huang, W. Wang and C. Lu, *Appl. Surf. Sci.*, 2021, 545, 149032-149044.
- W. Liu, P. Wang, Y. Ao, J. Chen, X. Gao, B. Jia and T. Ma, *Adv. Mater.*, 2022, 34, 2202508-2202516.
- C. Yu, J. He, M. Tan, Y. Hou, H. Zeng, C. Liu, H. Meng, Y. Su, L. Qiao, T. Lookman and Y. Bai, *Adv. Funct. Mater.*, 2022, **32**, 2209365-2209377.
- 12. Z. Xie, X. Tang, J. Shi, Y. Wang, G. Yuan and J.-M. Liu, *Nano Energy*, 2022, **98**, 107247-107258.
- P. Wang, X. Li, S. Fan, X. Chen, M. Qin, D. Long, M. O. Tadé and S. Liu, *Appl. Catal. B-Environ.*, 2020, 279, 119340-119349.
- J. Yuan, X. Huang, L. Zhang, F. Gao, R. Lei, C. Jiang, W. Feng and P. Liu, *Appl. Catal. B-Environ.*, 2020, 278, 119291-119299.