Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Underlying factors of mega pressure hysteresis in cerium-rich

CaCu₅-type metal hydrides and effective modification strategies

Panpan Zhou^{a,1}, Jianwei Zhang^{b,1}, Jiapeng Bi^{a,1}, Xuezhang Xiao^{a,c,*}, Ziming Cao^a,

Liujun Zhan^a, Huahai Shen^d, Miao Lu^e, Zhinian Li^e, Yuyuan Zhao^f, Li Wang^f, Mi

Yan^{a,f,*}, and Lixin Chen^{a,*}

^a State Key Laboratory of Silicon and Advanced Semiconductor Materials; School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.

^b School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China ^c Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310013, Zhejiang, China.

^d Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China.

^c Institute of Energy Materials and Technology, General Research Institute for Non-ferrous Metals, Beijing 100088, China.

^f Baotou Research Institute of Rare Earths, Baotou 014030, China.

* Corresponding author.

Email: lxchen@zju.edu.cn (L.X. Chen), xzxiao@zju.edu.cn (X.Z. Xiao), mse_yanmi@zju.edu.cn (M.

Yan)

¹ These authors contributed equally.

Supplemental Tables

process.						
$La_{1-x}Ce_xNi_5$	x = 0	<i>x</i> = 0.2	<i>x</i> = 0.4	<i>x</i> = 0.6	x = 0.8	<i>x</i> = 1.0
ΔH_{a} (kJ.mol ⁻¹)	-28.23±0.33	-24.77±0.05	-25.46±0.54	-20.61±0.66	-17.64±0.47	$-15.73^{*}\pm0.07^{*}$
$\Delta S_{a} (J.mol^{-1}. K^{-1})$	-102.39±1.08	-99.00±0.17	-109.49±1.78	-100.93±2.20	-98.74±1.54	-100.58*±0.24*
$\Delta G_{a, 293.15K}$ (kJ.mol ⁻¹)	1.78	4.25	6.63	8.96	11.31	13.72*
$\Delta H_{\rm d}$ (kJ.mol ⁻¹)	30.33±0.23	27.78±0.86	27.18±1.02	21.78±0.11	21.03±1.39	18.30*±1.09*
ΔS_{d} (J.mol ⁻¹ . K ⁻¹)	106.14±0.75	103.15±2.83	106.07±3.37	93.65±0.38	96.50±4.58	92.76*±3.59*
$\Delta G_{d, 293.15K}$ (kJ.mol ⁻¹)	-0.79	-2.48	-3.94	-5.68	-7.28	-8.88*

Table S1. The thermodynamic properties of La-Ce-Ni based alloys during de-/hydrogenation

Table S2. The average mechanical properties of bulk $LaNi_5$ polycrystal.

Mechanical Properties	Voigt	Reuss	Hill	
Bulk Modulus B / GPa	136.46	135.640	136.049	
Young's Modulus E / GPa	160.68	157.015	159.015	
Shear Modulus G / GPa	61.62	60.211	60.916	
Poisson's Ratio v	0.30	0.307	0.305	
P-wave Modulus / GPa	218.62	215.921	217.270	
Pugh's Ratio B/G	2.21	2.253	2.233	
Vickers Hardness-1 / GPa	5.75	5.459	5.603	
Vickers Hardness-2 / GPa	6.89	6.649	6.770	

Mechanical Properties	Voigt	Reuss	Hill	
Bulk Modulus B / GPa	152.08	151.532	151.805	
Young's Modulus E / GPa	174.82	170.808	172.819	
Shear Modulus G / GPa	66.81	65.088	65.948	
Poisson's Ratio v	0.31	0.312	0.310	
P-wave Modulus / GPa	241.16	238.316	239.736	
Pugh's Ratio B/G	2.28	2.328	2.302	
Vickers Hardness-1 / GPa	5.88	5.519	5.698	
Vickers Hardness-2 / GPa	7.07	6.768	6.920	

Table S3. The average mechanical properties of bulk $CeNi_5$ polycrystal.

Table S4. The crystallographic data of RENi₅-based alloys.

Atomic number	A 11 or y	Atomic radius / pm C	Electron	Lattice parameters / Å		- / -	Unit cell
	Alloy		Configuration	а	с	a/c	volume /Å ³
57	LaNi ₅	187	6s2 5d1	5.0170	3.9810	1.2602	86.78
58	CeNi ₅	181	6s2 4f1 5d1	4.8750	4.0100	1.2157	82.53
59	PrNi ₅	182	6s2 4f3	4.9470	3.9830	1.2420	84.42
60	NdNi ₅	182	6s2 4f4	4.9478	3.9750	1.2447	84.27
61	PmNi ₅	183	6s2 4f5	-	-	-	-
62	SmNi ₅	181	6s2 4f6	4.9300	3.9700	1.2418	83.56
63	EuNi5	199	6s2 4f7	4.9225	3.9631	1.2421	83.16
64	GdNi ₅	179	6s2 4f7 5d1	4.9020	3.9640	1.2366	82.49
65	TbNi ₅	180	6s2 4f9	4.8940	3.9660	1.2340	82.26
66	DyNi ₅	180	6s2 4f10	4.8760	3.9670	1.2291	81.67
67	HoNi ₅	179	6s2 4f11	4.8732	3.9625	1.2298	81.49
68	ErNi ₅	178	6s2 4f12	4.8540	3.9640	1.2245	80.88
69	TmNi ₅	177	6s2 4f13	4.8340	3.9700	1.2176	80.34
70	YbNi ₅	176	6s2 4f14	4.8260	3.9760	1.2138	80.20
71	LuNi ₅	175	6s2 4f14 5d1	4.8340	3.9690	1.2179	80.32

Supplemental Figures

Figure S1. SEM images with related EDS mappings of (a) LaNi₅, (b) La_{0.8}Ce_{0.2}Ni₅, (c) La_{0.6}Ce_{0.4}Ni₅, (d) La_{0.4}Ce_{0.6}Ni₅, (e) La_{0.2}Ce_{0.8}Ni₅, (f) CeNi₅.

Figure S2. Calibration detail information for specific plane after fast Fourier transform (FFT) treatment for Figure 1 (d-g) and Figure 1 (h-k) of LaNi₅ and CeNi₅ TEM cross-sectional samples:

(a) z-axis along the direction of [101], (b) z-axis along the direction of [1-10].

Figure S3. De-/Hydrogenation Van't Hoff curves of CeNi₅ alloy based on the derived equilibrium

pressure values.

Figure S4. XPS survey of LaNi₅ and CeNi₅ before and after Ar ion beam etch.

Figure S5. (a) SEM images of La_{0.2}Ce_{0.8}Ni₅ alloy prepared through melt spun-40 m/s; (b) Illustration of related cross-section grain structure; (c) EDS mappings of elemental composition.

Figure S6. XRD patterns of La_{0.2}Ce_{0.8}Ni₅ alloy that prepared through ILM and MS-40.

Figure S7. De-/Hydrogenation Van't Hoff curves of $La_{0.2}Ce_{0.8}Ni_5$ alloy prepared through MS-40.