Supporting Information

	Temperature range T/K	Activation energy $E_{\rm a}$ / kJ mol ⁻¹	Preexponential factor $\log(A_0 / \text{ S cm}^{-1} \text{ K})$	$\sigma_{298~\mathrm{K}}$ / S cm ⁻¹
bulk	173–203	31.8(5)	6.98(13)	-
	248-318	7.92(9)	1.356(17)	3.1×10^{-3}
g.b.	173–318	40.0(2)	7.86(4)	2.3×10^{-2}
total	173–233	37.62(17)	7.200(5)	-
	298-348	10.89(4)	1.821(7)	2.7×10^{-3}

Table S1. Activation energy, pre-exponential factor, and conductivity for bulk, grain boundary (g.b.), and total conductivity of $CsPb_{0.9}K_{0.1}F_{2.9}$

Figure S1. Arrhenius plot of the ionic conductivities of CsPbF₃. Bulk, grain boundary (g.b.), and total conductivities are shown as red triangle, blue square, and black circle, respectively.

Figure S2. (a) Rietveld refinement result for the synchrotron XRD data of $CsPb_{0.9}K_{0.1}F_{2.9}$ at 200 K. Red point, black line, blue line, and green symbol represent the observed intensities, calculated intensities, difference curves, and positions of the Bragg reflections of tetragonal $CsPb_{0.9}K_{0.1}F_{2.9}$. (b) Refined structure of tetragonal $CsPb_{0.9}K_{0.1}F_{2.9}$ at 200 K. Green, black, purple, and grey balls represent Cs, Pb, K, and F atoms, respectively.

Table S2. Rietveld refinement results from synchrotron XRD data for CsPb_{0.9}K_{0.1}F_{2.9} at 200 K

Atom	Site	g	x	у	Ζ	$B_{iso} / \text{\AA}^2$
Cs^+	1 <i>a</i>	1.000(2)	0	0	0	0.3
Pb^{2+}	1 <i>b</i>	0.906(3)	0.5	0.5	0.4735(14)	0.3
\mathbf{K}^+	1 <i>b</i>	$=1-g(Pb^{2+})$	0.5	0.5	$=z(Pb^{2+})$	0.3
F^{-}	1 <i>b</i>	0.9667	0.5	0.5	-0.049(14)	5
F-	2c	0.9667	0	0.5	0.5	5

Unit cell: tetragonal *P4mm*(99); a = b = 4.71016(18) Å, c = 4.7845(3) Å, V = 109.4670(7) Å³; $R_{wp} = 11.4\%$, $R_p = 8.3\%$, $R_F = 2.5\%$, S = 4.0

Figure S3. (a) Rietveld refinement result for neutron diffraction data of CsPbF₃ at 298 K. Red crosses, black line, blue line, and green marks represent the observed intensity, the calculated intensity, the difference curve, and the positions of the Bragg reflections of cubic- CsPbF₃, respectively. (b) The refined structure of CsPbF₃. Green, blue, and grey balls represent Cs, Pb, and F atoms, respectively. Thermal ellipsoids are shown with a probability level of 50%. (c) Three-dimensional isosurface of nuclear scattering length density of CsPbF₃ obtained from MEM analysis. The yellow isosurfaces correspond to positive nuclear scattering length density at 3 fm $Å^{-3}$

Table S3. Rietveld refinement results from the neutron diffraction data of CsPbF₃ at 298 K

Atom	Site	g	x	у	Ζ	$U_{ m eq}$ / Å ²	U_{11} / Å ²	U_{22} / Å ²	U_{33} / Å ²
Cs	1 <i>b</i>	1	0.5	0.5	0.5	0.02859(9)	0.02859(9)	$=U_{11}(Cs)$	$=U_{11}(Cs)$
Pb	1 <i>a</i>	1	0	0	0	0.01095(6)	0.01095(6)	= <i>U</i> ₁₁ (Pb)	= <i>U</i> ₁₁ (Pb)
F	3 <i>d</i>	1	0.5	0	0	0.07620(13)	0.0276(2)	0.1005(2)	$=U_{22}(F)$

Unit cell: cubic *Pm-3m* (221); a = b = c = 4.803166(4) Å, $R_{wp} = 3.36\%$, $R_e = 1.87\%$, $R_p = 2.76\%$, $R_B = 2.85\%$, $R_F = 5.64\%$, goodness of fit $S = R_{wp}/R_e = 1.80$.

Figure S4. Migration energy of fluoride ions in CsSrF₃