Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Aromatic Polyaroxydiazole Pseudocapacitive Anode Materials with

Tunable Electrochemical Performance through Side Group Engineering

Yan Jiang^{a,b}, Chen Yang^{a,b}, Yuanyuan Yu^{a,b}, Yulin Zhou^{a,b}, Shengchang Zhang^{a,b}, Pengqing Liu^{a,b},

Jiadeng Zhu^{c,d} and MengjinJiang^{a,b*}

^a College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China

^b State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China

^c Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

^d Smart Devices and Printed Electronics Foundry, Brewer Science Inc., Springfield, MO 65806,

USA

Figure S1. The intrinsic viscosity and the fitting curves of the POD samples.

Figure S2. N1s XPS spectra of p-POD.

Figure S3. The binding energy of POD samples.

Figure S4. TG and DTG curves of the POD samples in N₂ atmosphere.

Figure S5. Dihedral angles of POD's hexamer layers.

Figure S6. (a) The schematic diagram of the structure and conductance of POD samples. (b) The specific operation of electronic conductivity testing. The i-t curves of POD samples (c) p-POD; (d) p-POD; (e) Br-POD; and (f) NO₂-POD.

Figure S7. CV curves of POD electrodes at different scan rates (10, 20, 25, 30, 40, 50, 60, 80, 100, 120, 150, 180, 200, 220, 250, 280, and 300mV s⁻¹): (a) p-POD; (b) p-POD; (c) Br-POD; and (d) NO₂-POD; The b values and fitting curves of POD samples: (e) p-POD, and (f) NO₂-POD, (g) F-POD, and (h) Br-POD; The correction coefficients and fitting curves of (i) F-POD; (j) Br-POD; CV curves of POD electrodes at different cycles with a scan rate of 80 mV s⁻¹: (k) F-POD, (l) Br-POD.

material	electrode composition	gravimetri c specific	areal specific capacitance	electrolyte	ref
		capacitanc	$(mF cm^{-2})$		
		e (F g ⁻¹)			
Lig	Lig confined on	203 at 1 A	/	0.1M HClO ₄	4
	rGO surface	g ⁻¹			
PPOT	РРОТ	310 at 25	/	0.5M HCl	5
	nanoparticles	mV s ⁻¹			
TF	G3DTF	400 at 1	160 at 1 mV	$1 M H_2 SO_4$	6
		mV s ⁻¹	s ⁻¹		
PEDOT	EVPP-PEDOT	180 at 1 A	/	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	7
		g-1			
PANI	PANI/RGO	431 at	718 at 0.45 A	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	8
		0.45 1A g ⁻	g ⁻¹		
PPy	PPy film	403 at	/	1M KCl	9
	-	0.45 1 A			
		g ⁻¹			
p-POD	p-POD film	530 at 1 A	117	1M Et ₄ NBF ₄ in	This work
		g ⁻¹		AN	

Table S1. Comparison of discharge capacity of CP electrode materials

Figure S8. The low potential resistance of the electrolyte (1.0 M Et₄NBF₄ in AN).

Figure S9. The equivalent circuit.

Supplementary References

1. J. C. Russell, V. A. Posey, J. Gray, R. May, D. A. Reed, H. Zhang, L. E. Marbella, M. L.

Steigerwald, Y. Yang, X. Roy, C. Nuckolls and S. R. Peurifoy, NAT MATER., 2021, 20, 1136-1141.

2. Q. Xie, W. Li, B. Li, Z. Sun, S. Liang, Y. Zhou and M. Jiang, *Journal of Applied Polymer Science*, 2023, 140, e53820.

3. Y. Yu, J. Zhu, K. Zeng and M. Jiang, J MATER CHEM A., 2021, 9, 3472-3481.

4. S.-K. Kim, Y. K. Kim, H. Lee, S. B. Lee and H. S. Park, ChemSusChem, 2014, 7, 1094-1101.

5. Z. Hou, Q. Yang, H. Lu and Y. Li, J. APPL. POLYM. SCI., 2016, 133.

6. S. Witomska, Z. Liu, W. Czepa, A. Aliprandi, D. Pakulski, P. Pawluć, A. Ciesielski and P. Samorì, J. Am. Chem. Soc. , 2019, 141, 482-487.

7. S. Acharya, L. M. Santino, Y. Lu, H. Anandarajah, A. Wayne and J. M. D'Arcy, Sustainable Energy Fuels, 2017, 1, 482-491.

8. M. Kim, C. Lee and J. Jang, Adv. Funct. Mater, 2014, 24, 2489-2499.

9. M. Li and L. Yang, J Mater Sci: Mater Electron, 2015, 26, 4875-4879.