Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

## Evaluating the Synthesis of Mg[Al(hfip)<sub>4</sub>]<sub>2</sub> Electrolyte for Mg Rechargeable Batteries: Purity, Electrochemical Performance and Costs

Tjaša Pavčnik<sup>1,2</sup>, Jernej Imperl<sup>2</sup>, Mitja Kolar<sup>2</sup>, Robert Dominko<sup>1,2,3</sup>, Jan Bitenc<sup>1,2\*</sup>

<sup>1</sup>National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia

<sup>2</sup>Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia

<sup>3</sup>Alistore-European Research Institute, CNRS FR 3104, Hub de l'Energie, Rue Baudelocque, 80039, Amiens, France

\*Corresponding author: jan.bitenc@ki.si



**Figure S1:** IR spectra of MgAlhfip salts synthesized by different procedures with marked characteristic peaks. Grey curves on **a**) and **b**) graphs represent spectra of MgAlhfip\_OMe and MgAlhfip\_Br *in situ* electrolytes in G2, from which solvent spectrum was subtracted, to extract the signals belonging to the MgAlhfip salts (red and yellow curve, respectively).



Figure S2: <sup>1</sup>H NMR of G2 solvent.



Figure S3: a) <sup>1</sup>H and b) <sup>19</sup>F NMR of NaAlhfip salt.

 Table S1: ICP-OES analysis of MgAlhfip samples.

| MgAlhfip     | Expected Mg | Measured Mg* | Expected Al | Measured Al* |
|--------------|-------------|--------------|-------------|--------------|
| product      | [%]         | [%]          | [%]         | [%]          |
| MgAlhfip_OMe | 1.443       | 1.444        | 3.203       | 3.012        |
| MgAlhfip_Br  |             | 1.078        |             | 3.842        |
| MgAlhfip_Cl  |             | 1.337        |             | 2.830        |
| MgAlhfip_Bu  |             | 1.481        |             | 3.229        |

\*The relative standard deviation for the presented results is within 2%.

**Table S2**: Determination of impurities in MgAlhfip\_Br and MgAlhfip\_Cl with ICP-OES.

| MgAlhfip    | Impurities |          |          |  |
|-------------|------------|----------|----------|--|
| product     | Na [%]     | Cl [ppm] | Br [ppm] |  |
| MgAlhfip_Br | 1.338      | /        | < 0.623  |  |
| MgAlhfip_Cl | 1.858      | 33.8     | /        |  |



**Figure S4**: Coulombic efficiency of Mg plating/stripping in MgAlhfip\_OMe electrolyte in G2 and in G1/G2 = 1/4 solvent mixture. Corresponding galvanostatic curves of the  $10^{th}$  cycle are shown as insets.



**Figure S5**: Coulombic efficiency of Mg plating/stripping in MgAlhfip\_Bu and MgAlhfip\_OMe electrolytes with a comparable solvent composition of G1/G2 = 1/4. Corresponding galvanostatic curves of the 10<sup>th</sup> cycle are shown as insets.



**Figure S6**: Coulombic efficiency of Mg plating/stripping in 0.4 M MgAlhfip\_Bu electrolyte in G2 with and without the addition of NaAlhfip (5 mM). Corresponding galvanostatic curves of the 10<sup>th</sup> cycle are shown as insets.



Figure S7: IR spectra of MgAlhfip\_OMe salts of different purities.



**Figure S8**: Coulombic efficiency of Mg plating/stripping in MgAlhfip\_Bu and MgAlhfip\_OMe\_prec electrolytes. Corresponding galvanostatic curves of the 10<sup>th</sup> cycle are shown as insets.



Figure S9: IR spectra of MgAlhfip\_Cl salts of different purities.



**Figure S10**: <sup>1</sup>H NMR spectra of MgAlhfip\_Cl salts of different purities.

 Table S3: ICP-OES analysis of MgAlhfip\_Cl samples.

| MgAlhfip product | Expected Mg<br>[%] | Measured Mg<br>[%] | Expected Al<br>[%] | Measured Al [%] |
|------------------|--------------------|--------------------|--------------------|-----------------|
| MgAlhfip_Cl_ev   | 1.443              | 1.337              | 2 202              | 2.830           |
| MgAlhfip_Cl_prec |                    | 1.439              | 5.203              | 3.095           |

\*The relative standard deviation for the presented results is within 2%.

 Table S4: Determination of contaminants in different purities of MgAlhfip\_Cl samples with ICP-OES analysis.

| MaAlbfin product | Contaminants |          |  |
|------------------|--------------|----------|--|
| MgAimp product   | Na [%]       | Cl [ppm] |  |
| MgAlhfip_Cl_ev   | 1.858        | 33.8     |  |
| MgAlhfip_Cl_prec | 1.932        | 35.8     |  |



**Figure S11**: Coulombic efficiency of Mg plating/stripping in MgAlhfip\_Cl electrolytes of different purities. Corresponding galvanostatic curves of the 10<sup>th</sup> cycle are shown as insets.



**Figure S12**: Coulombic efficiency of Mg plating/stripping in MgAlhfip\_Bu electrolytes of different purities. Corresponding galvanostatic curves of the 10<sup>th</sup> cycle are shown as insets.



**Figure S13**: Coulombic efficiency of Mg plating/stripping in MgAlhfip\_OMe electrolytes of different purities with and without the  $Al(CH_3)_3$  additive. Corresponding galvanostatic curves of the  $10^{th}$  cycle are shown as insets.



**Figure S14**: Coulombic efficiency of Mg plating/stripping in MgAlhfip\_Cl\_prec electrolyte with and without the  $Al(CH_3)_3$  additive. Corresponding galvanostatic curves of the  $10^{th}$  cycle are shown as insets.

**Table S5:** Estimated time for each step of different synthesis procedures of MgAlhfip electrolytes. The overall time does not include time for drying solvents (5–7 days per solvent) and HFIP alcohol (4 days).

| Electrolyte  | Synthesis steps                                      | Time [h]     |  |
|--------------|------------------------------------------------------|--------------|--|
| MgAlhfip_OMe | Synthesis and drying of Mg(hfip) <sub>2</sub>        | 48           |  |
|              | Synthesis and drying of Al(hfip) <sub>3</sub>        | 24           |  |
|              | Formation of in situ electrolyte                     | 96           |  |
|              | 3                                                    | 168 (7 days) |  |
| MgAlhfip_Br  | NaAlH <sub>4</sub> purification                      | 48           |  |
|              | Synthesis of Na[Al(hfip) <sub>4</sub> ]              | 48           |  |
|              | Formation of in situ electrolyte                     | 24           |  |
|              | 3                                                    | 120 (5 days) |  |
| MgAlhfip_Cl  | NaAlH <sub>4</sub> purification                      | 48           |  |
|              | Synthesis of Mg(AIH <sub>4</sub> ) <sub>2</sub>      | 24           |  |
|              | Synthesis of Mg[Al(hfip) <sub>4</sub> ] <sub>2</sub> |              |  |
|              | Salt drying                                          | 48           |  |
|              | 4                                                    | 120 (5 days) |  |
| MgAlhfip_Bu  | Synthesis of Mg[Al(hfip) <sub>4</sub> ] <sub>2</sub> | 24           |  |
|              | Salt drying                                          | 48           |  |
|              | 2                                                    | 72 (3 days)  |  |

## Estimation of chemicals cost

Costs (Figure S15) are calculated based on the prices of the specific chemicals we used to perform the syntheses and prepare the electrolytes, listed in Table S6. Prices of the chemicals were collected from online catalogs of the selected suppliers in May 2023. Calculations refer to the preparation of 1 mL of 0.4 M MgAlhfip electrolytes in G2 solvent (0.4 mmol of salt) – the composition of electrolytes that was used to perform the electrochemical experiments within this work. Calculations consider the excess amounts of reactants utilized during the reactions, as well as the yield of each synthesis step.

**Table S6**: Specific reagents used in the experimental procedures, including purity, packaging, and supplier information.

| Chemical                                            | Purity           | Packing | Supplier       |
|-----------------------------------------------------|------------------|---------|----------------|
| 6–10 % Mg(OCH <sub>3</sub> ) <sub>2</sub> /methanol | -                | 500 mL  | Sigma Aldrich  |
| MgBr <sub>2</sub>                                   | 98%              | 10 g    | Sigma Aldrich  |
| MgCl <sub>2</sub>                                   | 99.9%, ultra-dry | 25 g    | Alfa Aesar     |
| 1.0 M <i>n</i> -Bu <sub>2</sub> Mg/heptane          | -                | 100 mL  | Sigma Aldrich  |
| NaAlH <sub>4</sub>                                  | 97%              | 10 g    | Sigma Aldrich  |
| 2.0 M Al(CH <sub>3</sub> ) <sub>3</sub> /toluene    | -                | 100 mL  | Sigma Aldrich  |
| HFIP                                                | 99%              | 1 kg    | Fluorochem     |
| THF                                                 | >99.9%, for HPLC | 2.5 L   | Honeywell      |
| G1                                                  | 99.9%, for HPLC  | 1 L     | Sigma Aldrich  |
| G2                                                  | 99%              | 2.5 L   | Acros Organics |
| hexane                                              | >95%             | 2.5 L   | Carl Roth      |



Figure S15: Chemicals cost estimation for different synthesis procedures of MgAlhfip electrolytes.



**Figure S16**: Comparison of electrochemical performance in MgAlhfip\_OMe electrolyte with the addition of  $Al(CH_3)_3$  and MgAlhfip\_Bu electrolyte. Corresponding galvanostatic curves of the 10<sup>th</sup> cycle are shown as insets.

## REFERENCES

- 1. Herb, J. T., Nist-Lund, C. A. & Arnold, C. B. A Fluorinated Alkoxyaluminate Electrolyte for Magnesium-Ion Batteries. *ACS Energy Lett.* **1**, 1227–1232 (2016).
- 2. Zhao-Karger, Z., Gil Bardaji, M. E., Fuhr, O. & Fichtner, M. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. *J. Mater. Chem. A* **5**, 10815–10820 (2017).
- 3. Murugan, S. *et al.* Ultra-Stable Cycling of High Capacity Room Temperature Sodium-Sulfur Batteries Based on Sulfurated Poly(acrylonitrile). *Batter. Supercaps* **4**, 1636–1646 (2021).
- 4. Keyzer, E. N. *et al.* A general synthetic methodology to access magnesium aluminate electrolyte systems for Mg batteries. *J. Mater. Chem. A* **7**, 2677–2685 (2019).
- 5. Mandai, T., Youn, Y. & Tateyama, Y. Remarkable electrochemical and ion-transport characteristics of magnesium-fluorinated alkoxyaluminate-diglyme electrolytes for magnesium batteries. *Mater. Adv.* **2**, 6283–6296 (2021).
- 6. Pavčnik, T. *et al.* On the Practical Applications of the Magnesium Fluorinated Alkoxyaluminate Electrolyte in Mg Battery Cells. *ACS Appl. Mater. Interfaces* **14**, 26766–26774 (2022).