Supplementary Materials

From wasted polymers to N/O co-doped partially graphitic carbon with hierarchical porous architecture as a promising cathode for high performance Znion hybrid supercapacitors

Huan Liu ^{a,} *, Xiuli Huang ^a, Wei Chen ^{b, c}, Lei Ding ^a, Yiming Ren ^a, Zongcheng Miao ^{a,} **, Maodong Xu ^a, Jiang Zhu ^{b, c,} ***

^a School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.

^b Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.

^c Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.

*Corresponding authors.

E-mail addresses: huanhuan_l@126.com (H. Liu), miaozongcheng@ahpu.edu.cn (Z. Miao), zhujiang1046@zju.edu.cn (J. Zhu).

Figure S1. TG curve of disposable blue nitrile gloves.

Figure S2. SEM image and the corresponding EDS mappings of C, N and O elements

of NGCA material.

Figure S3. XRD patterns of as-fabricated materials.

Figure S4. (a) XRD pattern and (b) Raman spectrum of NGC sample.

Figure S5. (a) XPS survey spectrum, (b) High resolution C 1s XPS spectrum, (e) High resolution N 1s XPS spectrum and (f) High resolution O 1s XPS spectrum of as-produced NGC sample.

Figure S6. N and O contents of as-fabricated materials.

Figure S7. The ratios of sp² C to sp³ C (sp²/sp³) of as-fabricated materials.

Figure S8. (a) Fitting plots of log *i* vs. log *v* from Peak O and Peak R of CV curves at a scan rate range from 3 to 50 mV s⁻¹, (b) Diffusion and capacitive contributions at a scan rate of 3 mV s⁻¹ for Zn//NGCA device.

Figure S9. Electrochemical kinetics analysis of Zn//NGCA-a: (a) CV curves at a scan

rate range from 3 to 300 mV s⁻¹, (b) Fitting plots of log *i* vs. log *v* from Peak O and Peak R of CV curves at a scan rate range from 3 to 50 mV s⁻¹, (c) Diffusion and capacitive contributions at a scan rate of 3 mV s⁻¹, (d) Capacitive and diffusion contributions at different scan rates.

Electrochemical kinetics analysis of Zn//NGCA-b: (e) CV curves at a scan rate range from 3 to 300 mV s⁻¹, (f) Fitting plots of log *i* vs. log *v* from Peak O and Peak R of CV curves at a scan rate range from 3 to 50 mV s⁻¹, (g) Diffusion and capacitive contributions at a scan rate of 3 mV s⁻¹, (h) Capacitive and diffusion contributions at different scan rates.

Figure S10. The Coulombic efficiencies calculated from GCD profiles of NGCAsbased aqueous ZIHSC devices at different current densities.

Figure S11. GCD curves at a current density range from 0.1 to 50 A g^{-1} for (a) Zn//NGCA-a and (b) Zn//NGCA-b.