Supporting Information

Ionization of Hole-Transporting Materials as a Method for Improving the Photovoltaic Performance of Perovskite Solar Cells

Yogesh S. Tingare, *^a Chien-Hsiang Lin,^b Chaochin Su, *^a Sheng-Chin Chou,^a Ya-Chun Hsu,^a Dibyajyoti Ghosh, *^c Ning-Wei Lai,^a Xin-Rui Lew,^b Sergei Tretiak,^{d,e} Hsinhan Tsai, *^f Wanyi Nie, *^{e,g} and Wen-Ren Li*^b

^aProf. Y. S. Tingare, Prof. C. Su, S.-C. Chou, Y.-C. Hsu, N.-W. Lai Institute of Organic and Polymeric Materials/Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei-106344, Taiwan E-mail: <u>f12098@ntut.edu.tw</u>; <u>f10913@mail.ntut.edu.tw</u>

^bC.-H. Lin, X.-R. Lew, Prof. W.-R. Li Department of Chemistry, National Central University, Zhongli-32001, Taiwan E-mail: <u>ch01@ncu.edu.tw</u>

^cProf. D. Ghosh

Department of Chemistry and Department of Materials Science and Engineering (DMSE), Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016, India E-mail: <u>dibyajyoti@iitd.ac.in</u>

Dr. S. Tretiak

^dTheoretical Division, Los Alamos National Laboratory, Los Alamos National Laboratory, Los Alamos, NM-87545, USA.

^eCenter for Integrated Nanotechnologies, Materials Physics and Application Division, Los Alamos National Laboratory, Los Alamos, NM-87545, USA.

Dr. H. Tsai

^fDepartment of Chemistry, University of California, Berkeley, Berkeley, CA 94720 E-mail: <u>hsinhantsai@berkeley.edu</u>

Dr. W. Nie

^eCenter for Integrated Nanotechnologies, Materials Physics and Application Division, Los Alamos National Laboratory, Los Alamos, NM-87545, USA.

^gDepartment of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA. E-mail: <u>wanyinie@buffalo.edu</u>

Supplementary Figures

Figure S1. Time-resolved photoluminescence for perovskites and perovskites/HTM interface.

Table S1. The detailed parameters of PL obtained by fitting the TRPL of PEDOT:PSS, PMO, PMO-MeSO₄, PMO-SCN and PMO-I.

HTM	A ₁	τ ₁	A ₂	τ ₂	τ _{Avg}
FTO	6827.6	6.0261	3025.2	17.46	9.539
PEDOT:PSS	1976.6	1.7197	7534.3	8.3250	6.952
РМО	4996.3	3.3416	5037.3	7.3400	5.349
PMO-MeSO ₄	5765.80	3.2037	4246.2	7.4159	4.990
PMO-SCN	6472.00	1.5049	3648.3	6.7962	3.412
PMO-I	5765.49	0.6980	3985.9	2.6811	1.509

Figure S2. Scanning electron microscopy top-view image, with inset water contact angle, of **PEDOT:PSS** film.

Figure S3. (a) X-ray diffraction of perovskite films atop of different HTM films. (b) Fitted results of X-ray diffraction ratio.

Figure S4. EQE spectra with integrated J_{SC} of the PSCs with **PEDOT:PSS**.

Figure S5. The (a) optimized structure and (b) partial density of states (pDOS) of pristine MAPbI₃ slab. The slab has four layers of PbI. The pDOS depicts that there is no surface induced state(s) appear inside the bandgap of MAPbI₃.

Figure S6. The (a) optimized structure and (b) partial density of states (pDOS) of **PMO-SCN** passivated MAPbI₃ slab. The charge densities of the (c) VBM and (d) CBM. The wavefunctions of the band edge states show significant delocalization. Key: Sulphur (green).

H¹ and C¹³ NMR

