Supporting Information

High performance thermoelectrics from low-cost and abundant CuS/CuI composites

Rafiq Mulla^{1,2‡*}, Aleksandar Živković^{3‡*}, Michael E. A. Warwick¹, Nora H. de Leeuw^{2,4}, Charles W. Dunnill¹, Andrew R. Barron^{1,5,6,7*}

¹ Energy Safety Research Institute, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK ²Dept. of Physics, B.M.S. College of Engineering, Bengaluru-560019, India

³ Department of Earth Sciences, Utrecht University, Princetonlaan 8a,3548CB Utrecht, The Netherlands

⁴ School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom

⁵ Arizona Institutes for Resilience (AIR), University of Arizona, Tucson, AZ 85721, USA

⁶ Department of Chemistry and Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA

⁷ Faculty of Engineering, UniversitiTeknologi Brunei, Brunei Darussalam

*Corresponding Author: rafiq.mulla.phy@bmsce.ac.in (RM); a.zivkovic@uu.nl(AŽ)

c.dunnill@gmail.com (CWD); a.r.barron@swansea.ac.uk(ARB)

‡ These authors contributed equally

Additional information

Employed basis sets listed in CRYSTAL17 input format, taken from <u>https://www.crystal.unito.it/basis-sets.php</u> (accessed 14/07/2022).

Copper	Sulphur
86-4111(41D)G_doll_2000	86-311G*_lichanot_1993
29 8	16 6
0 0 8 2.0 1.0	0 0 8 2.0 1.0
398000.0 0.000227	109211.0 0.0002520
56670.0 0.001929	16235.206 0.0019934
12010.0 0.01114	3573.0286 0.0111177
3139.0 0.05013	943.23811 0.0498945
947.2 0.17031	287.26179 0.1661455
327.68 0.3693	99.914226 0.3627018
128.39 0.4030	38.602137 0.4108787
53.63 0.1437	15.531224 0.1457875
0168.01.0	0168.01.0
1022.0 -0.00487 0.00850	281.22171 -0.0057780
238.9 -0.0674 0.06063	0.0081427
80.00 -0.1242 0.2118	67.106575 -0.0665855
31.86 0.2466 0.3907	0.0565570
13.33 0.672 0.3964	21.794135 -0.1203552
4.442 0.289 0.261	0.2039582
0 1 4 8.0 1.0	8.2097646 0.2741310
54.7 0.0119 -0.0288	0.3973328
23.26 -0.146 -0.0741	3.4178289 0.6463829
9.92 -0.750 0.182	0.3946313
4.013 1.031 1.280	1.5452225 0.2925792
0 1 1 1.0 1.0	0.1544345
1.582 1.0 1.0	0 1 3 6.0 1.0
0 1 1 0.0 1.0	4.3752432 -0.1750000 -

0.596 1.0 1.0	0.0613439
0 1 1 0.0 1.0	1.8096201 -0.5938952
0.150 1.0 1.0	0.1272251
0 3 4 10.0 1.0	0.6833985 0.8298996
48.54 0.031	1.2215893
13.55 0.162	0 1 1 0.0 1.0
4.52 0.378	0.2413 1.0 1.0
1.47 0.459	0 1 1 0.0 1.0
0 3 1 0.0 1.0	0.106 1.0 1.0
0.392 1.0	0310.1.
	0.383 1.0

Iodide

LC_doll_1998	
253 5	
INPUT	
7.022210	
3.511200 83.113863 0	
1.755600 5.201876 0	
2.968800 82.811109 0	
1.484400 3.379682 0	
1.906600 10.304277 0	
0.953300 7.588032 0	
2.307500 -21.477936 0	
0112.01.0 merged s and p	
2.130007 1.0 1.0	
0110.01.0 merged s and p	
0.3245 1.0 1.0	
0110.01.0 merged s and p	
0.1115 1.0 1.0	
0 2 1 5. 1	
2.432887 1.	
0 0 1 0. 1	
1.770481 1.	

Iodide Mike Towler 53 11 0 0 9 2.0 1.11463 3796580.0 0.0000486 556463.0 0.000394 120030.0 0.00229 30877.7 0.011153 8938.77 0.046196 2853.41 0.153983 1013.04 0.3495 403.42 0.4298 169.683 0.20006 0 1 7 8.0 1.13163 10780.9 -0.000264 0.0010711 2502.22 -0.00608 0.00978 769.087 -0.0513 0.0575 274.618 -0.147205 0.2194 111.365 0.1122 0.4605 51.8482 0.5808 0.4568 25.1274 0.471 0.215 0 1 6 8.0 1.15719 230.902 0.00648 -0.0135 91.8899 -0.0261 -0.0666 38.3274 -0.3172 0.0089 17.3859 -0.0365 0.8289 8.1559 0.90233 1.3049 3.88355 0.4588 0.443 03610.01.0 407.397 0.013328 121.623 0.0935 45.6127 0.3035 18.9877 0.470024 8.4634 0.3103 3.6279 0.054 0138.01.0 9.05308 - 2.3837 - 0.0815 4.9116 -0.5412 0.3104

2.3444 5.3892 0.719 0117.01.0 1.179 1.0 1.0 0 3 3 10.0 1.0 6.7601 0.2229 2.7113 0.5615 1.1174 0.4214 0310.01.0 0.4254 1.0 0110.01.0 0.585 1.0 1.0 0110.01.0 0.2194 1.0 1.0 0110.01.0 0.0686 1.0 1.0

Figure S1. (a) SEM-EDX elemental mapping of a broken solid pellet of CuS:CuI (wt%)-1:4 sample. Images show coloured elemental mapping, (b) shows the composition of the same sample.

Figure S2. Calculated electrical conductivity (σ), Seebeck coefficient (S), and electronic part of the thermal conductivity (κ) as function of charge carrier concentration of CuS (top) and CuI (bottom) using the HSE functional.

Figure S3. Calculated charge density difference (isosurface reported for a value of 0.002 $e^{A^{-3}}$) together with the band alignment derived from the LPDOS analysis outlined in the main text, supplemented with the band bending mechanism elaborated through the planar averaged charge density.